A modest proposal to use *Rates of Incoherence* as a guide for personal uncertainties about logic and mathematics.

Mark J. Schervish, Teddy Seidenfeld, and Joseph B. Kadane

Carnegie Mellon University
Outline

• Savage’s challenge.

 How to represent uncertainty so that you may learn from mere thinking and/or computing?

 DeFinetti’s *Prevision Game*: coherent previsions for math/logical constants.

• Two existing strategies for replying to Savage’s challenge:

 o Relax the algebraic closure conditions for measurable spaces

 o I.J.Good’s *Statistician’s Stooge* and the failure of *Total Evidence*

• A third strategy:

 Modify the *Prevision Game* to allow for *rates* of incoherence

 o A simple application with “data” from computations.
In his (1967) *Difficulties in the theory of personal probability*, Savage writes,

The analysis should be careful not to prove too much; for some departures from theory are inevitable, and some even laudable. For example, a person required to risk money on a remote digit of \(\pi \) would, in order to comply fully with the theory, have to compute that digit, though this would really be wasteful if the cost of computation were more than the prize involved.

For the postulates of the theory imply that you should behave in accordance with the logical implication of all that you know.

Is it possible to improve the theory in this respect, making allowance within it for the cost of thinking, or would that entail paradox, as I am inclined to believe but unable to demonstrate? If the remedy is not in changing the theory but rather in the way in which we are to attempt to use it, clarification is still to be desired.

- But why is it that *the postulates of the theory imply that you should behave in accordance with the logical implication of all that you know?*
Begin with a review of deFinetti’s *Book* argument for coherent wagering. The zero-sum (sequential) *Prevision Game* is played between a *Bookie* and a *Gambler*, with a *Moderator* supervising.

Let X be a random variable defined on a space $\Omega = \{\omega_1, \omega_2, \ldots \}$ of pairwise-exclusive and mutually-exhaustive possibilities.

The *Bookie’s* prevision $p(X)$ on the r.v. X has the operational content that,

when the *Gambler* fixes a real-valued quantity $\alpha_{X, p(X)}$

then the resulting payoff to the *Bookie* in state ω is

$$\alpha_{X, p(X)} [X(\omega) - p(X)],$$

with the opposite payoff to the *Gambler.*
A simple version of deFinetti’s *Book* game proceeds as follows:

1. The *Moderator* identifies a (possibly infinite) set of random variables \{X_i\}

2. The *Bookie* announces a prevision \(p_i = p(X_i) \) for each r.v. in the set.

3. The *Gambler* then chooses (finitely many) non-zero terms \(\alpha_i = \alpha X_i \cdot p(X_i) \).

4. The *Moderator* settles up and awards *Bookie* (*Gambler*) the respective
SUM of his/her payoffs in state \(\omega \):

\[
\text{Total payoff to Bookie} = \sum_{i=1}^{n} \alpha_i [X_i(\omega) - p_i].
\]

\[
\text{Total payoff to Gambler} = -\sum_{i=1}^{n} \alpha_i [X_i(\omega) - p_i].
\]
Definition: The Bookie’s previsions are incoherent if the Gambler can choose terms α_i that assures her/him a (uniformly) positive payoff, regardless which state in Ω obtains – so then the Bookie loses for sure.

A set of previsions is coherent, if not incoherent.

Theorem (deFinetti):
A set of previsions is coherent
if and only if

each prevision $p(X)$ is the expectation for X under a common (finitely additive) probability P.

That is,
$$p(X) = E_{P(\cdot)}[X] = \int_{\Omega} X(\omega) \, dP(\omega)$$
Two Corollaries:

Corollary 1: When the random variables are indicator functions for events \(\{E_i\} \), so that the gambles are simple bets – with the \(\alpha \)'s then the stakes in a winner-take-all scheme – then the previsions \(p_i \) are coherent if and only if each prevision is the probability \(p_i = P(E_i) \), for some (f.a.) probability \(P \).

Aside on conditional probability:

Definition: A called-off prevision \(p(X \mid\mid E) \) for \(X \), made by the Bookie on the condition that event \(E \) obtains, has a payoff scheme to the Bookie: \(\alpha_{X\mid\mid E} E(\omega)[X(\omega) - p(X \mid\mid E)] \).
Corollary 2: Then a called-off prevision $p(X \mid E)$ is coherent alongside the (coherent) previsions $p(X)$ for X, and $p(E)$ and E if and only if $p(X \mid E)$ is the conditional expectation under P for X, given E.

That is, $p(X \mid E) = E_{P_{\cdot\mid E}}[X] = \int_{\Omega} X(\omega) \, dP(\omega\mid E)$

and is the conditional probability $P(X \mid E)$ if X is an event.

In this sense, the Bookie’s conditional probability distribution $P(\cdot\mid E)$ provides the decision theoretic norm for her/his static called-off bets.

- Coherence of called-off previsions is not to be confused with the norm for a dynamic learning rule, e.g., when the Bookie learns that E obtains.
Reflect on Savage’s challenge in some detail.

Let X_{π_6} be the variable whose value is the 6th decimal digit of π.

In an ordinary measurable space $\langle \Omega, \mathcal{B} \rangle$,

X_{π_6} is the constant 2,

independent of ω.

In an ordinary measure space, it is certain that the event “$X_{\pi_6} = 2$” obtains,

since as a mathematical result, it obtains in each state ω.

Thus, in any ordinary measure space, there is no elbow room for

a non-extreme probability distribution about the possible values for X_{π_6}

or for an expectation other than 2 for its value.

• Any prevision other than $P(X_{\pi_6}) = 2$ is incoherent!
Strategy #1: Relax the (algebraic) closure conditions for measurable spaces to accommodate the agent’s “boundedly rational” perspective.

Instances of Strategy #1:

Garber (1983) – Use only sentential operators; no functions, relations, etc.

Gaifman (2004) – Restrict detachment/entailment rules so that logically equivalent expressions are not automatically put into the same equivalence class with respect to a conditional probability $P(\cdot | \cdot)$.

→ Hacking (1967) – Let it be up to the agent to determine the “space.” (?)

De Finetti (1974) – The class of variables that receive a well-defined (coherent) prevision form only a linear span, which may be strictly smaller than the space of events formed by the Boolean closure of events that receive previsions.

See below for an example where the linear span is strictly smaller than the Boolean closure.
Two responses to Strategy #1:

(R1) (except for Hacking’s proposal) Modeling “bounded” rationality:

The weakened closure conditions remain overly restrictive. They do not capture ordinary uncertainty about math/logical facts. YOUR “bounded” reasoning need not line up with any of these weakened closure rules.

(R2) How does such a “boundly rational” agent make decisions?

None of these proposals includes a decision theory to show how the agent might apply her/his modified personal probabilities.

(and for Hacking): What remains of the old distinction between coherent and incoherent previsions?
Example where the linear span is strictly smaller than the Boolean closure:

Consider a roll of a six-sided die with faces numbered: \(\Omega = \{1, 2, 3, 4, 5, 6\} \).

YOU assess previsions for just these four events \(\mathcal{E} = \{ \{1\}, \{3, 6\}, \{1, 2, 3\}, \{1, 2, 4\} \} \).

YOUR Previsions are in accord with the assessment that the die is fair:

\[
P(\{1\}) = 1/6; \quad P(\{3, 6\}) = 1/3; \quad P(\{1, 2, 3\}) = P(\{1, 2, 4\}) = 1/2.
\]

The set of events for which YOUR coherent prevision is determined by these four according to the rules of Prevision Game is governed by de Finetti’s (1974) Fundamental Theorem. In this example, that set does \textit{not} form an algebra. Only 24 of 64 events (only 12 pairs of complementary) events have determinate previsions.

For instance, by the Fundamental Theorem:

\[
P(\{4\}) = 0 < \bar{P}(\{4\}) = 1/3; \quad P(\{6\}) = 0 < \bar{P}(\{6\}) = 1/3;
\]

likewise

\[
P(\{4, 6\}) = 1/3.
\]

The smallest Boolean algebra for the 4 events in \(\mathcal{E} \) is the power set of all 64 subsets of \(\Omega \).
Strategy #2: Use Good’s Statistician’s Stooge to step around Total Evidence.

- The Stooge can be compelled to censor the data according to the Statistician’s directions.

- The Stooge can learn X, but reports only the reduced $g(X) = Y$ to the Statistician, according to the Statistician’s stipulations about g.
Continuing Example

Consider a problem in geometric probability that relies on three familiar bits of knowledge from high school geometry.

- The area of a circle with radius r equals πr^2.
- The area of a square is the square of the length of its side.
- The Pythagorean Theorem: Given a right triangle, with side lengths a and b and hypotenuse length c, then $a^2 + b^2 = c^2$.

The Statistician’s measure space, $\langle \Omega, \mathcal{B}, P \rangle$:

Let Ω be the set of points interior to a Circle C with radius r.

Let \mathcal{B} be the algebra of geometric subsets of C generated by ruler-and-compass constructions.

Let P be uniform over points in Ω. A point from Ω is chosen at random, with equal probability for congruent subsets of C.
A Statistican knows her probability that the random point is in region S (an element of \mathcal{B}) is the ratio of the area(S) to the area(C).

A Statistician is aware that

$$P(\text{the random point is in } S) = \frac{\text{area}(S)}{\pi r^2}.$$

Let S be a square inscribed inside the Circle C, as in Figure 1.

![Figure 1](image)

Then by the Pythagorean theorem and the rule for the area of a square, $\text{area}(S) = 2r^2$.

So, a Statistician is aware that

$$P(\text{The random point is in the square } S) = \frac{2}{\pi}.$$
Connect the *Continuing Example* with Savage’s challenge, as follows:

Suppose *Statistician* is aware that the first five decimals digits in the expansion of π are 3.14159. She cannot identify the 6th decimal digit of π.

Using the familiar long division algorithm, then *Statistician* is unable to calculate precisely her personal probability, $(2/\pi)$, beyond the first 4 digits (0.6366) that the random point is in S.

- She is unaware of the *value* of her personal probability.
- She knows that the 5th digit of her personal probability is either 1 or 2.

But, e.g, then she is unable to answer whether a bet that the random point is in S at odds of $.6366 : .36338$ is favorable, fair, or unfavorable.
Application of Strategy #2 to the Continuing Example:

Use a Statistician’s Stooge to replace the original uncertain quantity X_{π_6} with a different quantity, θ, that the Stooge knows (but the Statistican does not know) is coextensive with X_{π_6}.

Then Statistician may hold non-extreme but coherent probabilities about the substitute variable θ. In this way, familiar numerical methods, including Monte Carlo methods, permit Statistician to learn about X_{π_6} by shifting the failure of the Total Evidence principle to the Stooge.
As an instance of I.J Good’s *Statistician’s Stooge, Stooge*, creates an elementary statistical estimation problem for the quantity $2/\pi$ using *iid* repeated draws from the uniform distribution on the circle C.

Stooge chooses C with center at the origin (0,0) and radius $r = \sqrt{2}$.

Then the inscribed square S has corners with coordinates (± 1, ± 1).

Let $X_i = (X_{i1}, X_{i2})$ ($i = 1, \ldots, n$) be n random points drawn by the *Stooge* using the uniform distribution on C.

After each draw the Stooge determines whether or not $X_i \in S$, i.e., whether or not both inequalities obtain: $-1 \leq X_{ij} \leq +1$ ($j = 1, 2$), which involves examining only the first significant digit of X_{ij}.
Now, the *Stooge* tells *Statistican* whether the event Y occurs on the i^{th} trial, $Y_i = 1$, if and only if $X_i \in S$ for a region S. All the *Stooge* tells Statistician about the region S is that it belongs to the algebra \mathcal{B}.

The Y_i form an *iid* sequence of Bernoulli(θ) variables, with $\theta = \text{area}(S)/2\pi$.

As it happens, $\theta = 2/\pi$ But this identity is suppressed in the following analysis, with which both *Statistician* and the *Stooge* concur.
Both know that $\sum_{i=1}^{n} Y_i$ is Binomial(n,θ).

Let $\bar{Y}_n = \sum_{i=1}^{n} Y_i/n$ denote the sample average of the Y_i.
\bar{Y}_n is a sufficient statistic for θ, i.e., a summary of the n draws X_i that preserves all the relevant evidence in a coherent inference about θ based on the data of the n-many iid Bernoulli(θ) draws.

The Stooge samples with $n = 10^{16}$, obtains $\bar{Y}_n = 0.63661977236$ and carries out ordinary Bayesian reasoning with Statistician about the Binomial parameter θ using Statistician’s “prior” for θ.
According to what the *Stooge* tells *Statistician*, θ is an uncertain Bernoulli quantity of no special origins.

For convenience, suppose that *Statistician* uses a (uniform) conjugate Beta(1, 1) “prior” distribution for θ, denoted here as $P(\theta)$.

So, the *Stooge* reports and given these data, Statistician’s “posterior” probability is greater than .999, that $0.63661971 \leq \theta \leq 0.63661990$.

Then, since the *Stooge* knows that $\theta = 2/\pi$, *Stooge* reports that Statistician’s probability is at least .999 that the 6$^{\text{th}}$ digit of π is 2.
Of course, in order for Statistician to reach this conclusion she has to rely on the Stooge to suppress the information that S is an inscribed square within C, rather than some arbitrary geometric region within the algebra of ruler-and-compass constructions.

But this information is not fully ignorable, since Stooge needs this particular information in order to determine the value of each Y_i.

• Response to this use of Good’s Statistician’s Stooge:

(R3) How is Statistician to formulate precisely what she knows about π and X_{π_6} so as to create the appropriate replacement variable, e.g., Y in the Continuing Example, for the Stooge?
Strategy #3: Modify the Prevision Game to allow for rates of incoherence

There are two aspects of deFinetti’s coherence criterion that we relax.

1. Previsions may be one-sided, to reflect a difference between buy and sell prices for the Bookie, which depends upon whether the Gambler chooses a positive or negative α-term in the payoff $\alpha_{X,p(X)} \ [X(\omega) - p(X)]$ to the Bookie.

 For positive values of α, allow the Bookie to fix a maximum buy-price.
 • Betting on event E, this gives the Bookie’s lower probability $p^*_*(E)$,
 \[
 \alpha^+ [E(\omega) - p^*_*(E)].
 \]

 For negative values of α, allow the Bookie to fix a minimum sell-price.
 • Betting against event E, this gives the Bookie’s upper probability $p^*(E)$,
 \[
 \alpha^- [E(\omega) - p^*(E)].
 \]
At odds between the lower and upper probabilities, *Bookie* rather not wager!

This approach has been explored for more than 50 years!

(See http://www.sipta.org/ the *Society for Imprecise Probabilities, Theories and Practices*)

For example, when dealing with upper and lower probabilities:

Theorem [C.A.B. Smith, 1961]

- If the *Bookie’s* one-sided betting odds $p_\star(\bullet)$ and $p^*(\bullet)$ correspond, respectively, to the infemum and supremum of probability values from a *convex* set of (coherent) probabilities, then the *Bookie’s* wagers are coherent: then the *Gambler* can make no *Book* against the *Bookie*.

- Likewise, if the *Bookie’s* one-sided *called-off* odds $p_\star(\bullet || E)$ and $p^*(\bullet || E)$ correspond to the infemum and supremum of conditional probability values, given E, from a *convex* set of (coherent) probabilities, then they are coherent.
2. deFinetti’s coherence criterion is dichotomous.

- A set of (one-sided) previsions is coherent – then no Book is possible, or it is not, and then the previsions form an incoherent set.

BUT, are all incoherent sets of previsions equally bad, equally irrational?

- Rounding a coherent probability distribution to 10 decimal places and rounding the same distribution to 2 decimal places may both produce “incoherent” betting odds. Are these two equally defective?

- Some Classical statistical practices are non-Bayesian – they have no Bayes models.
Are all non-Bayesian statistical practices equally irrational?

ESCROWS for Sets of Gambles when a Book is possible

In order to normalize the *guaranteed gains* that the *Gambler* can achieve by making Book against the *Bookie*, we introduce an ESCROW function.

Let \(Y_i = \alpha_i(X_i - p_i) \) be a wager that is *acceptable* to the *Bookie*.

Let \(G(Y_1, \ldots, Y_n) \) be the *(minimum)* guaranteed gains to the *Gambler* from a Book formed with gambles acceptable to the (incoherent) *Bookie*.

An *escrow function* \(e(Y_1, \ldots, Y_n) \) normalizes the (minimum) guaranteed gains:

Where \(H \) is the intended *measure* or *rate* of incoherence,

\[
H(Y_1, \ldots, Y_n) = \frac{G(Y_1, \ldots, Y_n)}{e(Y_1, \ldots, Y_n)}
\]
Here are 7 conditions that we impose on an Escrow function,
\[e(Y_1, \ldots, Y_n) = f_n(Y_1, \ldots, Y_n). \]

1. For one (simple) gamble, \(Y \), the player’s escrow \(e(Y) = f(Y) = Z \) is her/his maximum possible loss from an outcome of \(Y \).

2. The escrow of a set of gambles is a function of the individual escrows.
\[e(Y_1, \ldots, Y_n) = f_n(e(Y_1), \ldots, e(Y_n)) = f_n(Z_1, \ldots, Z_n). \]

3. \(f_n(cZ_1, \ldots, cZ_n) = cf_n(Z_1, \ldots, Z_n) \) for \(c > 0 \). Scale invariance of escrows.

4. \(f_n(Z_1, \ldots, Z_n) = f_n(Z_{\pi(1)}, \ldots, Z_{\pi(n)}) \) Invariance for any permutation \(\pi(\bullet) \).

5. \(f_n(Z_1, \ldots, Z_n) \) is non-decreasing and continuous in each of its arguments.

6. \(f_n(Z_1, \ldots, Z_n, 0) = f_n(Z_1, \ldots, Z_n) \) If a gamble carries no escrow, the total escrow is determined by the other gambles.

7. \(f_n(Z_1, \ldots, Z_n) \leq \sum_i Z_i \) The total escrow is bounded above by the sum of the individual escrows.
When the escrow reflects the (incoherent) Bookie’s exposure in the set of gambles, we call the measure H the Bookie’s guaranteed rate of loss.

When the escrow reflects the Gambler’s exposure, we call the measure H the Gambler’s guaranteed rate of gain.

Also, we have a third perspective, neutral between the Bookie’s and Gambler’s exposures, which we use for singly incoherent previsions, as might obtain with failures of mathematical or logical omniscience.

The third (neutral) perspective uses an escrow: $e(Y) = |\alpha|$. In the case of simple bets, this escrow is the magnitude of the stake.

The neutral escrow results in a measure of coherence H that is continuous in both the random variables and previsions, unlike the case with the measures of guaranteed rates of loss or gain, above.
Some basic results in this theory

Application-1: Incoherence for a set of previsions over a (finite) partition.
Let \(\{E_1, \ldots, E_n\} \) form a partition, and let \(0 \leq p_*(E_i) \leq \sigma(E_i) \leq 1 \) be the Bookie’s lower and upper probabilities for these events.
So, we assume that no prevision is incoherent alone.

Let \(\sum_{i=1}^{n} p_*(E_i) = q \) and \(\sum_{i=1}^{n} \sigma(E_i) = r \), and

So, the Bookie is incoherent if and only if either \(q > 1 \) or \(r < 1 \).

Theorem (for rate of loss – the Bookie’s escrow):

1. If \(\sum_{i=1}^{n} p_*(E_i) > 1 \), then the Gambler maximizes the guaranteed rate of loss by choosing the stakes (\(\alpha \)’s) equal and positive. \(H = \frac{q - 1}{q} \)
2. If \(\sum_{i=1}^{n} \sigma(E_i) < 1 \), then the Gambler maximizes the guaranteed rate of loss by choosing the stakes (\(\alpha \)’s) equal and negative. \(H = \frac{1 - r}{n - r} \)
3. If the \(p_*(E_i), \sigma(E_i) \neq 0 \), then these maximin solutions are unique.
What about efficient Bookmaking from the perspective of the Gambler’s escrow, the guaranteed rate of gain?

Example: If the Bookie's incoherent lower odds are (.6, .7, .2) on \{E_1, E_2, E_3\}, then we note the following, by the previous Theorem:

Equal stakes (\(\alpha_1 = \alpha_2 = \alpha_3 > 0\)) maximizes the rate of loss, with \(H = 1/3\).

Then, since the Gambler’s escrows has the same total in this case as the Bookie under this strategy, equal stakes by Gambler produces a rate of gain of 1/3.

- However, the Gambler can improve on this rate, upping it to 3/7, by setting \(\alpha_1 = \alpha_2 > 0\) and setting \(\alpha_3 = 0\).

This situation is generalized as follows.
Reorder the atoms so that the Bookie's odds are not decreasing:

\[p_j \geq p_i \] whenever \(j \geq i \). Again, assume that \(0 \leq p_j \leq 1 \).

Theorem (for rate of gain— the Gambler’s escrow):

(1) If \(\sum_{i=1}^{n} p^*(E_i) = r < 1 \), then the Gambler maximizes the rate of gain by choosing the stakes equal and negative.

(2) If \(\sum_{i=1}^{n} p^*(E_i) = q > 1 \), then the Gambler maximizes the rate of gain by choosing the stakes according to the following rule:

Let \(k^* \) be the first \(k \) such that

\[\sum_{i=n-k+1}^{n} p^*_{\alpha_i} \geq 1 + (k-1)p_{n-k} \]

with \(k^* = n \) if this equality always fails.

Then the Gambler sets the \(\alpha_i \) all equal and positive for \(i \geq n-k^*+1 \),

and sets \(\alpha_i = 0 \) for all \(i < n - k^* \).
For the rate of gain, when the Bookie’s incoherent previsions lie in the dotted region the Gambler uses only 2 previsions, but uses all 3 in the pink region.
Application-2: How to reason from an incoherent position.

Aside: In this section we restrict ourselves to previsions, rather than working with lower and upper previsions, in order to simplify the analysis of the Gambler’s optimal strategy.

As before, let \(\{E_1, \ldots, E_n\} \) form a partition, and let \(0 \leq p(E_i) \leq 1 \) be the Bookie’s previsions for these \(n \)-many events.

Again, we assume that no one of these previsions is incoherent, by itself.

Let \(\sum_{i=1}^{n} p(E_i) = q \). It might be that \(q \neq 1 \), so that the Bookie’s previsions are incoherent.

- Now, the Moderator introduces a new random variable \(X \), measurable with respect to this partition, i.e., \(X = \sum_i x_i E_i \), and calls upon the Bookie to give a prevision for \(X \), \(p(X) \).
• What can the Bookie do with the value of $p(X)$ to avoid increasing her/his measure of incoherence?

For notational ease, order the events so that $x_1 \leq x_2 \leq \ldots \leq x_n$.

As before, we assume that $x_1 \leq p(X) \leq x_n$, so that by itself $p(X)$ is coherent.

Define $\mu = \sum_i x_i p_i$

You may think of μ as the pseudo-expectation for X with respect to the Bookie’s incoherent distribution $P(\bullet)$ for the x_i.
Theorem for the rate of loss — using the Bookie’s perspective on escrow:
The Bookie can avoid increasing the rate of loss with a previsions for X, as follows:

- If $q < 1$, choose $p(X)$ to satisfy
 \[\mu + \frac{1-q}{n-1} \sum_{i=1}^{n-1} x_i \leq p(X) \leq \mu + \frac{1-q}{n-1} \sum_{i=2}^{n} x_i \]

- If $q > 1$, choose $p(X)$ to satisfy
 \[\max\{ x_1, \mu - (q-1)x_n \} \leq p(X) \leq \min\{ x_n, \mu - (q-1)x_1 \} \]

- If $q = 1$, choose $p(X)$ to satisfy the Bayes solution
 \[\mu = p(X). \]
Theorem for the rate of gain – using the Gambler’s escrow:
The Bookie can avoid increasing the rate of gain by setting a prevision for X as:
Choose $p(X)$ to satisfy
$$\mu + (1-q)x_1 \leq p(X) \leq \mu + (1-q)x_n$$

Corollary 1: You don’t have to be coherent to like Bayes’ rule!
Consider a ternary partition $\{E_1, E_2, E_3\}$ with previsions $\{p_1, p_2, p_3\}$.
Let X be the r.v. for the called-off wager on E_3 vs E_1, called-off if E_2 obtains.

<table>
<thead>
<tr>
<th>Event</th>
<th>Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_1</td>
<td>$X(E_1)$ = 0</td>
</tr>
<tr>
<td>E_2</td>
<td>$X(E_2)$ = $p(X)$, and $X(E_3)$ = 1</td>
</tr>
</tbody>
</table>

Thus, $\alpha(X - p(X))$ has the respective payoffs:
- $-\alpha p(X)$
- 0
- $\alpha(1 - p(X))$

Then, e.g., with $q < 1$, the Bookie wants to satisfy the inequalities:
$$p_2p(X) + p_3 \leq p(X) \leq p_2p(X) + p_3 + (1-q)$$

If the Bookie uses a pseudo-Bayes value, the inequality is automatic, as follows:
$$p(X) = p(E_3 \parallel \{E_1, E_3\}) = \frac{p_3}{p_1 + p_3} = \text{“as if” calculating } \frac{p(E_3 \mid \{E_1, E_3\})}{\text{}}$$

Hence, betting like a coherent Bayesian makes sense even if you are incoherent!
Corollary 2:

Let Θ be a finite dimensional parameter space.

Let $p(\theta) > 0$ be possibly incoherent non-extreme, pseudo-prior density function.

Suppose, that a pseudo-likelihood density function $p(X = x \mid \theta)$ has a 0-rate of incoherence, i.e., its conditional probabilities are coherent.

Suppose, also, they are distinct likelihoods for different θ.

Let $X_i (i = 1, \ldots)$ form a sequence of conditionally iid variables, given θ, according to $p(X = x \mid \theta)$.

Use the pseudo-Bayes-algorithm to create a sequence of pseudo-posterior functions $p_n(\theta \mid X_1, \ldots, X_n), \ n = 1, \ldots$.

Then, almost surely with respect to the true state, $\theta^* \in \Theta$,

- the Neutral rate of incoherence for the pseudo-posterior converges to 0
- and that pseudo-posterior concentrates on θ^*.
Continuing Example (concluded):
Reconsider the version of the Continuing Example, with Good’s Statistician’s Stooge, involving iid sampling of bivariate variable X, a point randomly chosen from circle C.

S is a particular inscribed square.
Let $Y_i = 1$, if $X_i \in S$, and $Y_i = 0$, if $X_i \notin S$. Let $\theta = 2/\pi = P(Y=1 | \theta)$.
Supppose YOU assign a smooth but incoherent pseudo-prior to θ, e.g., use a Beta(1, 1) pseudo-prior.

Then, given the sequence, Y_n ($n = 1, \ldots$), by the Corollary,

- YOUR pseudo-posteriors, $P_n(\Theta | Y_1, \ldots, Y_n)$ converges (uniformly) to $2/\pi$.
- With the Neutral Rate, if $X_c(\omega) = c$ is a constant and $P(X_c)$ is a prevision for X_c, then the degree of incoherence for this one prevision is $|c - P(X_c)|$.
- Therefore, almost surely, also the Neutral Rate of incoherence in YOUR pseudo-posterior converges to 0.\ Example
Summary

We reviewed three strategies for responding to Savage’s challenge.

Strategy #1: Change the closure conditions for a measurable space.

But the modified closure conditions do not align with agent’s actual thinking.

Strategy #2: Adapt Good’s *Statistician’s Stooge* and sidestep *Total Evidence*.

But it is not evident how to capture with a random variable exactly what are the mathematical/logical facts that the *Statistician* overlooks.

Strategy #3: Concede that uncertainty about math/logic is incoherent.

But apply “robust” algorithms (e.g., Bayes’ rule) for learning from computations that reduce the agent’s rate of incoherence.
A modest proposal to use rates of incoherence as a guide for personal uncertainties about logic and mathematics.

Teddy, Mark, and Jay (circa 2011)
Selected References

Application: Statistical Hypothesis Testing at a Fixed (.05) level (Cox, 1958)

Null hypothesis $H_0: X \sim N[0, \sigma^2]$ vs. Alternative hypothesis $H_1: X \sim N[1, \sigma^2]$

Testing a simple null vs a simple alternative, so that the N-P Lemma applies.

For each value of the variance, as might result from using different sample sizes, by the N-P Lemma there is a family of Most Powerful (best) Tests.

Let us examine the familiar convention to give preference to tests of level $\alpha = .05$.

α is the chance of a type-1 error. β is the chance of a type-2 error.

Table of the best β-values for seven α-values and six σ-values.

<table>
<thead>
<tr>
<th>σ</th>
<th>.250</th>
<th>.333</th>
<th>.400</th>
<th>.500</th>
<th>1.000</th>
<th>1.333</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.010</td>
<td>.047</td>
<td>.250</td>
<td>.431</td>
<td>.628</td>
<td>.908</td>
<td>.942</td>
</tr>
<tr>
<td>.030</td>
<td>.017</td>
<td>131</td>
<td>.268</td>
<td>.452</td>
<td>.811</td>
<td>.871</td>
</tr>
<tr>
<td>.040</td>
<td>.012</td>
<td>.106</td>
<td>.227</td>
<td>.401</td>
<td>.773</td>
<td>.841</td>
</tr>
<tr>
<td>.050</td>
<td>.009</td>
<td>088</td>
<td>.196</td>
<td>.361</td>
<td>.740</td>
<td>814</td>
</tr>
<tr>
<td>.060</td>
<td>.007</td>
<td>.074</td>
<td>.172</td>
<td>.328</td>
<td>.710</td>
<td>.789</td>
</tr>
<tr>
<td>.070</td>
<td>.006</td>
<td>.064</td>
<td>.153</td>
<td>.300</td>
<td>.683</td>
<td>766</td>
</tr>
<tr>
<td>.100</td>
<td>.003</td>
<td>.043</td>
<td>.111</td>
<td>.236</td>
<td>.611</td>
<td>.702</td>
</tr>
</tbody>
</table>

With the convention to choose the best test of level α = .05, the following results:
With σ = 1.333, Test₁: (α = .05; β = .814) is chosen over Test₂: (α = .07; β = .766).
With $\sigma = 0.333$ Test$_3$: $(\alpha = .05; \beta = .088)$ is chosen over Test$_4$: $(\alpha = .03; \beta = .131)$.

But the mixed Test$_5 = .5$ Test$_1 \oplus .5$ Test$_3$ has $(\alpha = .05; \beta = .451)$.

Whereas mixed Test$_6 = .5$ Test$_2 \oplus .5$ Test$_4$ has $(\alpha = .05; \beta = .449)$, which is better!
A modest proposal to use rates of incoherence as a guide for personal uncertainties about logic and mathematics.

\[
\begin{align*}
\sigma &= 1.33 \\
\sigma &= 0.33
\end{align*}
\]
To apply our measures of incoherence, we have to get the Statistician to wager.

A Classical (non-Bayesian) Statistician will not admit to (non-trivial) odds on the rival hypotheses in this problem, but will compare tests by their RISK, so see if one (weakly) dominates another. In which case the dominated test is inadmissible.

The RISK (loss) function R of a statistical test T of H_0 vs H_1.

\[
R(\theta, T \mid \sigma) = \begin{cases}
\alpha(\sigma) & \text{if } \theta = 0 \text{ (the level of the test)} \\
\beta(\sigma) & \text{if } \theta = 1 \text{ (the chance of a type-2 error)}
\end{cases}
\]

A Classical Statistician who follows the convention prefers admissible tests at the .05 level over other tests.
This Statistician may be willing to trade away (to payout) the risk of the preferred test in order to receive (to be paid) the risk of another test, with a different level.

Trading RISKS between tests this way is represented by:

\[R(\theta, T_{\alpha(\sigma)} | \sigma) - R(\theta, T_{.05} | \sigma) = \begin{cases} \alpha(\sigma) - .05, & \text{if } \theta = 0 \text{ (the null obtains)} \\ \beta_{T_{\alpha(\sigma)}}(\sigma) - \beta_{T_{.05}}(\sigma), & \text{if } \theta = 1 \text{ (alternative obtains)} \end{cases} \]

which *is* of the form of a deFinetti *prevision*:

\[= a(E - b) \]

where \(E = H_0 \), i.e. the null hypothesis \(\theta = 0 \)
\[a = [\alpha(\sigma) - .05 + \beta_{T_{\alpha(\sigma)}}(\sigma) - \beta_{T_{.05}}(\sigma)] \]

and
\[b = [\beta_{T_{.05}}(\sigma) - \beta_{T_{\alpha(\sigma)}}(\sigma)] / [\alpha(\sigma) - .05 + \beta_{T_{.05}}(\sigma) - \beta_{T_{\alpha(\sigma)}}(\sigma)] \]
Here is a chart of the resulting *rate of loss* to the Classical Statistician who trades .05-level tests based on two samples of sizes \((n_0, n_1)\). Each curve is identified by the size of the first sample, \(n_0\).
A modest proposal to use rates of incoherence as a guide for personal uncertainties about logic and mathematics.