D. Testing: Choose between 2 scientific hypotheses

1. Ex.,
 a. you might want to know whether cure rate of a new treatment is different from the known cure rate of some standard treatment.
 b. you might want to know whether the average return on a certain kind of investment is higher than a certain fixed rate you are comparing it to, or whether it is the same.
 c. Factory manager might want to know whether average measurement of a part is what it should be or if it is different.

2. Formal problem: Test which of 2 hypotheses about data generation is true.
 a. One hypothesis is called null \(H_0 \): generally one that isn't very interesting and that researchers generally want to disprove
 b. Other is called alternative \(H_a \): one that researchers would like to demonstrate.
c. Characterize Errors:

<table>
<thead>
<tr>
<th>Really H_0 true</th>
<th>Really H_a true</th>
</tr>
</thead>
<tbody>
<tr>
<td>Say H_0 true</td>
<td>Correct</td>
</tr>
<tr>
<td>Say H_A true</td>
<td>Type II error</td>
</tr>
<tr>
<td></td>
<td>Type I error</td>
</tr>
<tr>
<td></td>
<td>Correct</td>
</tr>
</tbody>
</table>

d. Type I error more important:
 i. Often times, one or a few studies in which H_A accepted will close discussion of the question,
 ii. Since H_0 consists of only one point, type I error rate is less variable.

e. Standard case:
 i. H_0 is that parameter takes a particular value, although this is not necessary.
 ii. H_A is that parameter is either greater than, less than, or different from null value.

f. Want both error rates to be small.
 i. When testing from CI, Type I error rate is 5%.
 ii. Type II error rate depends on population mean.
 • Since Type II error rate might be really bad, usually don’t say we accept H_0, but that we can’t reject H_0.
 • Symmetrically say we reject H_0 if we accept H_A: This is said
Lecture 15

to be a statistically significant result.

g. Type I called significance level and denoted by α.
 i. Common choices are 5% or 1%.

h. Type II error denoted by β.
 i. Note that the lower α, the higher β.