D&P: 11.3

3. For two proportions:
 a. Setup:
 i. See proportion p_1 with quality from pop. 1 in sample of size n_1, estimating π_1
 ii. See proportion p_2 with quality from pop. 2 in sample of size n_2, estimating π_2
 b. Test $H_0 : \pi_1 = \pi_2$
 i. SE $\sqrt{\hat{p}(1-\hat{p})(1/n_1 + 1/n_2)}$
 • Under H_0 don’t have two p’s, but only one:
 • estimate using common p as total number with quality/total in both samples.
 • $= (n_1p_1 + n_2p_2)/(n_1 + n_2)$
 c. CI for $\pi_1 - \pi_2$?
 i. Estimate by $p_1 - p_2$
 ii. SD $\sqrt{\pi_1(1-\pi_1)/n_1 + \pi_2(1-\pi_2)/n_2}$
 iii. SE $\sqrt{\hat{p}(1-\hat{p})/n_1 + \hat{p}(1-\hat{p})/n_2}$
 iv. CI $p_1 - p_2 \pm z^*SE$
 v. Acceptance of hearing implants by deaf:
 \begin{tabular}{l|c|c}
 Deaf from Birth & 175 & 225 \\
 Reject & 75 & 25 \\
 \end{tabular}
 • The estimated proportion difference is $0.1 - 0.3 = -0.2$.
 • The standard error of the proportion difference is $\sqrt{0.3 \times (1-0.3)/250 + 0.1 \times (1-0.1)/250 = 0.035}$.
 • The 95% confidence interval for $\pi_2 - \pi_1$ is
 $-0.2 \pm 1.96 \times 0.035 = -0.2 \pm 0.069 = (-0.268, -0.132)$.
 • The test standard error of the statistic is 0.036.
 • The test statistic is $| -0.2/0.036 | = 5.774$.
 • The p-value is 0.
 vi. Example: Faults under standard and modified process for batches of material
 d. Note: Only works if $p_1n_1, (1-p_1)n_1, p_2n_2, (1-p_2)n_2 > 5$ (CI) or $p(n_1 + n_2), (1-p)(n_1 + n_2) > 5$ (test)
 e. Summary of normal–theory tests and CI’s
 i. If
 • Standard conditions hold:
 ▶ parameter we want to estimate is mean of sampling distribution of statistic
 ▶ sampling distribution is approximately normal
 ▶ we have an estimate of its standard deviation, called standard error
 • Hold if parameter is a population mean and statistic is sample average
 ii. Then
 • Confidence Interval
 ▶ Center is statistic value
 ▶ plus or minus z value times SE
 • Test
 ▶ Divide difference between statistic and H_0 parameter value by SE
 ▶ Compare to z value
 • Rules for getting parts

\begin{itemize}
 \item If there is a t-refinement of z, use it.
 \item If statistic is the sum or difference of two independent components, variances add.
 \item If null hypothesis adds information for calculating SE, use it.
\end{itemize}