H. Regression

1. Setup
 a. One response variable Y
 b. One or more explanatory variables X, W, \ldots, U
 i. Presume that Y set these
 ii. Consider the distribution of Y without making any allowance for randomness in X, W, \ldots, U.
 c. Related by $Y = f(X, W, \ldots, U) + \text{error}$

2. Observe n times with different values for X, W, etc.
 a. X_1, X_2, \ldots, X_n
 b. W_1, W_2, \ldots, W_n
 c. Y_1, Y_2, \ldots, Y_n

3. Objective: figure out f

4. Linear case: $f(X, W, \ldots, U) = \alpha + \beta X + \cdots + \gamma U$

5. Simple Linear case: $f(X) = \alpha + \beta X$
 a. Interpretation: β is average change in Y for unit change in X
 b. Error behavior:
 i. Population mean is zero
 ii. Constant spread σ
 iii. Independent
 iv. Approximately Normal
 c. Behavior of Y knowing X
 i. Population mean is $\alpha + \beta X$
 ii. SD σ
 iii. Approximately normal
 d. Recall estimates:
 i. $b = \frac{\sum_{i=1}^{n}(X_i - \bar{X})Y_i}{\sum_{i=1}^{n}(X_i - \bar{X})^2}$

\[
\frac{\sum_{i=1}^{n}(X_i - \bar{X})Y_i}{\sum_{i=1}^{n}(X_i - \bar{X})^2} = \frac{\sum_{i=1}^{n}(X_i - \bar{X}) (\alpha + \beta \bar{X} + \beta(X_i - \bar{X}))}{\sum_{i=1}^{n}(X_i - \bar{X})^2}
\]

\[
= \frac{\sum_{i=1}^{n}(X_i - \bar{X}) (\alpha + \beta \bar{X} + \beta(X_i - \bar{X}))}{\sum_{i=1}^{n}(X_i - \bar{X})^2} = \frac{\sum_{i=1}^{n}(X_i - \bar{X})^2}{\sum_{i=1}^{n}(X_i - \bar{X})^2}
\]

\[
= 0 + \beta
\]

- SD
 - Population variance of
 \[
 \sum_{i=1}^{n}(X_i - \bar{X})Y_i/\sum_{i=1}^{n}(X_i - \bar{X})^2 = \sum_{i=1}^{n}(X_i - \bar{X})^2 \sigma^2/\sum_{i=1}^{n}(X_i - \bar{X})^2 = \sigma^2/\sum_{i=1}^{n}(X_i - \bar{X})^2
 \]

 - Standard error $s_c/\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2}$

- Shape
 - If all errors start out normal, b is exactly normal, since sums of (multiples of) normals are still normal regardless of x’s.
 - If all $(X_i - \bar{X})$’s were same, for large samples, b approx normal: central limit theorem

ii. $a = \bar{Y} - b\bar{X}$

iii. $s_a^2 = \sum_{i=1}^{n}(Y_i - \hat{Y}_i)^2/(n - 2)$

 - Note in this case, the numerator is $n - 2$ rather than $n - 1$.

 - For example, if $n = 2$, then every data set may be fit exactly by a line, and so the numerator of s_a^2 will always be zero.

 - So the denominator should also be zero, to show that we don’t have any information about the variation of the Y’s about the regression line.

 - Objective: Learn about α, β: Tests, CI’s.

 i. Sampling distribution for b:

 - Mean

 - Population means combine linearly

 - Population mean of

- Normality also holds in inbetween case, with approximately normal errors and moderately similar X’s.

ii. Statistic:

 - $(b - \beta)/(\sigma/\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2}$ approximately standard normal

 - $(b - \beta)/(s_a/\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2}$ approximately $t(n - 2)$.

 - Usual construction for confidence intervals and tests.

iii. Example: Fig. 37/ shows association between daily changes in two financial indices.

 - Fig. 38/ shows box plots for one of these, with data grouped by rounding other.

 - We often determine where to take samples, so we determined X

iv. Example: Fig. 39/ shows measurements of the oxygen content of steel in a bar as a function of the distance along its length.

 - Fig. 40/ shows regression lines when new data are randomly generated.

 - When we don’t determine X, a more sophisticated analysis might be able to squeeze more out of data set.
Fig. 37: Changes in Dow Jones Average and Standard and Poor’s 500 Index

- Lines through means
- Line of Symmetry (SD line)
- Regression Line

Correlation = 0.958

Fig. 38: Distribution of Changes in Dow Jones Average, Conditional on Changes in Standard and Poor’s 500 Index

Fig. 39: Oxygen Content of a Steel Bar as a Function of Distance from the End

Correlation = 0.204

Fig. 40: Potential Regression Lines for Steel Example

Lines formed by adding random error to observations