VII. Sample Size Calculations

A. Preliminaries

1. We’ll do power for 1-sided tests
 a. Conceptually easier (as we shall see)
 b. Get power for 2-sided tests by doubling α

B. Exactly:

1. Select smallest C such that $P_{0}[T \geq C] \leq \alpha$
2. Power is $P_{A}[T \geq C]$.

C. Approximately,

1. Suppose
 a. $H_{0}: T \sim \mathcal{N}(\mu_{0}, \sigma_{0}^{2})$
 b. $H_{A}: T \sim \mathcal{N}(\mu_{A}, \sigma_{A}^{2})$

2. Critical value: C
 a. Reject H_{0} if $(T - \mu_{0})/\sigma_{0} \geq z_{\alpha}$
 b. $1 - \Phi(z_{\alpha}) = \alpha$
 c. Reject H_{0} if $T \geq \mu_{0} + \sigma_{0}z_{\alpha}$
 d. $C = \mu_{0} + \sigma_{0}z_{\alpha}$

3. Power is $P_{A}[T \geq C] = \Phi((\mu_{A} - \mu_{0} - \sigma_{0}z_{\alpha})/\sigma_{A})$
Lecture 7

4. Sample size:
 a. Assume that $\sigma_0 = \tau_0/\sqrt{n}$, $\sigma_A = \tau_A/\sqrt{n}$.
 b. Require power $1 - \beta$
 i. Typically, $0.8 = 80\%$.
 c. Then $-z_\beta = (\mu_0 + \sigma_0 z_\alpha - \mu_A)/\sigma_A$.
 i. $(\sigma_A z_\beta + \sigma_0 z_\alpha) = \mu_A - \mu_0$
 ii. $(\tau_A z_\beta + \tau_0 z_\alpha)/\sqrt{n} = \mu_A - \mu_0$
 iii. $(\tau_A z_\beta + \tau_0 z_\alpha)/(\mu_A - \mu_0) = \sqrt{n}$
 iv. $n = (\tau_A z_\beta + \tau_0 z_\alpha)^2/(\mu_A - \mu_0)^2$
 v. When $\tau_A = \tau_0$, $n = \tau_0^2(z_\beta + z_\alpha)^2/(\mu_A - \mu_0)^2$

5. Example:
 a. Null probability 0.5, alternative probability 0.6, one-sided test
 size $\alpha = 0.025$, power $1 - \beta = 0.8$
 b. $z_\alpha = 1.96$, $z_\beta = 0.84$.
 c. Need $X_+ = \frac{(\sqrt{0.6 \times 4} z_{0.8} - z_{0.025 \times 0.5})^2}{(0.6 - 0.5)^2} = 194$ individuals.

D. Often use variance stabilizing transformation for power
 1. Suppose the parameter of interest is $\mu = E[T]$
 2. Sometimes $\text{Var}[T]$ is a function of μ.
3. Look for transformation $g(T)$ of test statistic T so that

$$\text{Var}[g(T)] \text{ does not depend on } \mu$$

4. $\text{Var}[g(T)] \approx \text{Var}[g(\mu) + g'(\mu)(T - \mu)] = g'(\mu)^2 \text{Var}[T]$.

5. Find g so that $g'(\mu) = 1/\text{Var}[T]$.

6. Ex., Poisson $\text{Var}[T] = \mu$, so $g'(\mu) = 1/\sqrt{\mu}$, $g(\mu) = 2\sqrt{\mu}$.

7. Power is approximate

 a. Better approximation for Poisson uses fact that when

 $$X \sim P(\mu) \text{ then } \text{Var}[\sqrt{X}] \approx \mu \times (\frac{1}{2}\mu^{-1/2})^2 = \frac{1}{4}.$$

 b. Better approximation for binomial uses fact that

 $$\text{arcsin}(\sqrt{X_1/X_+}) \sim N(\text{arcsin}(\sqrt{Q_1/(Q_0 + \varsigma Q_1)}), 1/(4X_+))$$

 i. Q_+ is exponential of offset (or offset before you take log).

 ii. $\frac{d}{dx} \text{arcsin}(x) = 1/\sqrt{1 - x^2}$

 iii. $\frac{d}{dx} \text{arcsin}(\sqrt{x}) = 1/(2\sqrt{x}\sqrt{1 - x})$ See Figures 9 and 10.

 iv. $\mu_0 = \text{arcsin}(\sqrt{Q_1/(Q_0 + Q_1)})$, $\mu_A =$

 $\text{arcsin}((\varsigma\sqrt{Q_1/(Q_0 + \varsigma Q_1)}), \sigma_A = \sigma_0 = \sqrt{1/(4X_+})$

8. Exponential family models:

 a. Suppose that T has probabilities or mass function
\[\exp(t \tau - \mathcal{K}(\tau) - c(t)) \]

i. Upper left corner of 2 \times 2 table fits, if \(\tau \) is log odds ratio

ii. If independent addends have this pattern, then so does sum.

b. Calculate \(\mathcal{K}(\tau) = \log(\mathbb{E}_0[\exp(\tau T)]) \)

c. Differentiating once,
\[
\mathcal{K}'(\tau) = \frac{d}{d\tau} \mathbb{E}[\exp(\tau T)] / \mathbb{E}_0[\exp(\tau T)]
\]
\[
= \mathbb{E}_0 \left[\frac{d}{d\tau} \exp(\tau T) \right] / \mathbb{E}_0[\exp(\tau T)]
\]
\[
= \mathbb{E}_0[T \exp(\tau T)] / \mathbb{E}_0[\exp(\tau T)] = \mathbb{E}_\tau[T]
\]

d. Differentiating again,
Fig. 10: Variance Stabilizing Transformation

\[K''(\tau) = \frac{d}{d\tau} \left[\frac{E_0 [T \exp(\tau T)]}{E_0 [\exp(\tau T)]} \right] \]

\[= \frac{d}{d\tau} E_0 [T \exp(\tau T)] \frac{E_0 [\exp(\tau T)]^2}{E_0 [\exp(\tau T)]} - \frac{d}{d\tau} E_0 [\exp(\tau T)] E_0 [T \exp(\tau T)] \]

\[= \frac{E_0 [T^2 \exp(\tau T)]}{E_0 [\exp(\tau T)]} - \frac{E_0 [T \exp(\tau T)] E_0 [T \exp(\tau T)]}{E_0 [\exp(\tau T)]^2} \]

\[= E_\tau [T^2] - E_\tau [T]^2 = \text{Var}_\tau [T] \]

e. So \(\frac{d}{d\tau} E_\tau [T] = \text{Var}_\tau [T] \)

f. If \(H_0 : \tau = 0, \ H_A : \tau = \theta \), then for small \(\theta \), \(\sigma_0^2 \approx \sigma_A^2 \),

\[\mu_A - \mu_0 \approx \sigma_0^2 \theta \]
Lecture 8

g. Power is $\Phi(\sigma_0\theta - z_\alpha)$

9. Mantel–Haenszel example:
 a. $T = \text{sum of upper right corners}$
 b. $\sigma_0 = \sqrt{\sum_i \frac{X_{1+}^i X_{0+}^i + X_{+1}^i X_{+0}^i}{X_{++}^i X_{+++}(X_{++}^i - 1)}}$
 c. $X_{0+}, X_{1+}, \text{and } X_{++}$ fixed in advance.
 d. X_{+j} should be replaced by $X_{++}\pi_{+j}$

10. Mantel-Haentzel Example: Henhouse data set
 a. Six labs, and expect 9 control and 9 treatment chicks per lab
 i. So $X_{0+}^i = X_{1+}^i = 9$
 b. Expect null proportions of abnormalities to be $1/9 \text{ to } 6/9$.
 i. So null column totals are $X_{+0}^i = (2, 4, 6, 8, 10, 12)$, $X_{+1}^i = (16, 14, 12, 10, 8, 6)$.
 c. Null variance is $9 \times 9 \times (2 \times 16 + 4 \times 14 + 6 \times 12 + 8 \times 10 + \ldots)/(18 \times 18 \times 17) = 5.76$, and SE is 2.40
 d. Power for detecting log odds ratio of .5 is $\Phi(2.40 \times .5 - 1.96) = .224$.
 e. For 80% power, need log odds ratio satisfying $2.27\tau - 1.96 = .84 \text{ or } \tau = (0.84 + 1.96)/2.27$.
 f. If you want 80% power with log odds ratio .5, need
\[\sigma_0 \times 0.5 - 1.96 = 0.84, \text{ or } \sigma_0 = (0.84 + 1.96)/0.5 = 5.6. \]

Since \(\sigma_0 \) is approximately proportional to the square root of the number of chicks per group per lab, you need \(9 \times (5.6/2.27)^2 \) chicks per group in each lab.