IX. Polytomous Regression:

A. Parameterization in general:

1. Take a probability associated with category \(j \) for individual \(k \)
2. Make it depend on covariates \(x_k \) through parameters \(\beta_j \)
3. Often force some components of \(\beta_j \) not to depend on \(j \)
 a. Generally first component of \(x_k \) is 1
 b. Hence first component of \(\beta_j \) is intercept
 i. Generally intercept depends on \(j \)
 ii. Generally the other components do not.

B. Baseline-Category logits

1. \[
\log\left(\frac{P[Y_k = j]}{P[Y_k = 0]} \right) = \beta_j x_k
\]
 a. \((1 + \sum_{j>0} \exp(\beta_j x_k))P[Y_k = 0] = 1 \)
 b. \(P[Y_k = 0] = 1/(1 + \sum_{j>0} \exp(\beta_j x_k)) \)
2. \[
\log\left(\frac{P[Y_k = j]}{P[Y_k = l]} \right) = (\beta_j - \beta_l) x_k
\]

C. How do I fit this?

1. Series of separate logistic regressions conditional on sum of that
category and baseline category.
 a. Let \(Z_{k,j} = \begin{cases}
1 & \text{if } Y_k = j \\
0 & \text{otherwise}
\end{cases} \)
b. $L_j(\beta_j) = \prod_k \mathbb{P}[Y_k = 0] Z_{k0} \mathbb{P}[Y_k = j] Z_{kj}$

c. $\ell_j(\beta_j) = \sum_k [Z_{k0} \log(\mathbb{P}[Y_k = 0]) + Z_{kj} \log(\mathbb{P}[Y_k = j])] = \\
\sum_k [Z_{kj} \beta_j x_k - (Z_{k0} + Z_{kj}) \log(1 + \exp(\beta_j x_k))]$

d. $\ell'_j(\beta_j) = \sum_k [Z_{kj} - (Z_{k0} + Z_{kj}) \exp(\beta_j x_k)(1 + \\
\exp(\beta_j x_k))^{-1}] x_k = \sum_k [Z_{kj} - (Z_{k0} + Z_{kj}) \pi_k] x_k$

2. All at once:

a. $L(\beta_1, \beta_2, \ldots, \beta_{J-1}) = \prod_k \prod_j \mathbb{P}[Y_k = j] Z_{kj}$

b. $\ell = \sum_k \sum_j Z_{kj} \log(\mathbb{P}[Y_k = j] Z_{kj})$

= $\sum_k [\sum_{j>0} Z_{kj} \beta_j x_k + \sum_j Z_{kj} \log(\mathbb{P}[Y_k = 0] Z_{kj})]$

= $\sum_k [\sum_{j>0} Z_{kj} \beta_j x_k - \sum_j Z_{kj} \log(1 + \sum_{j>0} \exp(\beta_j x_k))]$

c. $\frac{d}{d \beta_j} \ell = \sum_k [Z_{kj} - \sum_l Z_{kl} \pi_{lk}] x_k$

i. $\pi_{jk} = \frac{\exp(\beta_j x_k)}{1 + \sum_{l>0} \exp(\beta_l x_k))}$

3. I don’t know how to fit this model in SAS or R.

D. Cumulative logits:

1. Suppose $\beta_j = (\theta_j, \alpha)$.

2. Suppose that $W_k - \alpha x_k$ has CDF $\exp(w)/(1 + \exp(w))$

a. Mean 0, standard deviation 1.8138
Lecture 11

3. Pick an increasing sequence θ_j

4. Suppose that $Y_k = j$ if $W_k \in [\theta_{j-1}, \theta_j)$.

5. $P[Y_k > j] = (1 + \exp(\theta_j + \alpha x_k))^{-1}$

6. $P[Y_k \leq j] = \exp(\theta_j + \alpha x_k)(1 + \exp(\theta_j + \alpha x_k))^{-1}$

7. $\log(P[Y_k > j]/P[Y_k \leq j]) = \theta_j + \alpha x_k$: cumulative logit model

E. Complimentary Log-Log Link:

1. Previous analysis, with CDF $1 - \exp(-\exp(x))$.
 a. Mean -0.577216, standard deviation 1.28255.

2. $\log(-\log(P[Y_k > j])) = \theta_j + \alpha x_k$.

3. Fig. 13/ compares the link functions.

F. Continuation logits:

1. Model log odds ratio for membership in category vs. all below it

2. or all above it.
Fig. 13: Link Comparison

- Comp.
- Log Log
- Logistic