VII. Sample Size Calculations

A. Preliminaries
1. We’ll do power for 1-sided tests
 a. Conceptually easier (as we shall see)
 b. Get power for 2-sided tests by doubling \(\alpha \)

2. Critical value: \(C \)
 a. Reject \(H_0 \) if \((T - \mu_0)/\sigma_0 \geq z_\alpha \)
 b. Reject \(H_0 \) if \(T \geq \mu_0 + \sigma_0 z_\alpha \)
 c. \(C = \mu_0 + \sigma_0 z_\alpha \)

3. Power is \(P_T[T \geq C] = \Phi((\mu_A - \mu_0 - \sigma_0 z_\alpha)/\sigma_A) \)
 a. Special Case: \(\sigma_0 = \sigma_A \), power is
 \[\Phi((\mu_A - \mu_0)/\sigma_A - z_\alpha) \]

4. Sample size:
 a. Assume that \(\sigma_0 = \tau_0/\sqrt{n} \), \(\sigma_A = \tau_A/\sqrt{n} \).
 b. Require power \(1 - \beta \)
 i. Typically, \(\beta = .8 \)
 c. Then \(-z_\beta = (\mu_0 + \sigma_0 z_\alpha - \mu_A)/\sigma_A \).
 i. \((\sigma_A z_\beta + \tau_0 z_\alpha)/\sqrt{n} = \mu_A - \mu_0 \)
 ii. \((\tau_A z_\beta + \tau_0 z_\alpha)/\sqrt{n} = \mu_A - \mu_0 \)
 iii. \((\tau_A z_\beta + \tau_0 z_\alpha)/(\mu_A - \mu_0) = \sqrt{n} \)

8. Exponential family models:
 a. Suppose that \(T \) has probabilities or mass function
 \[\exp(t \tau - K(\tau) - c(t)) \]
 i. Upper left corner of \(2 \times 2 \) table fits, if \(\tau \) is log odds ratio
 ii. If independent addends have this pattern, then so does sum.
 b. Calculate \(K(\tau) = \log(E_0[\exp(\tau T)]) \)
 c. Differentiating once,
 \[K'(\tau) = \frac{d}{d\tau} \log(E_0[\exp(\tau T)]) \]
 \[= \frac{d}{d\tau} \log(E_0[\exp(\tau T)]) + \log(E_0[\exp(\tau T)]) \]
 \[= E_T[\exp(\tau T)]/E_0[\exp(\tau T)] \]
 \[= E_T[T\exp(\tau T)]/E_0[\exp(\tau T)] = E_T[T] \]
 d. Differentiating again,
\[K''(\tau) = \frac{d}{d\tau} \left[\frac{E_0 [T \exp(\tau T)]}{E_0 [\exp(\tau T)]} \right] \]
\[= \frac{d}{d\tau} E_0 [T \exp(\tau T)] - \frac{d}{d\tau} E_0 [\exp(\tau T)] E_0 [T \exp(\tau T)] \frac{E_0 [\exp(\tau T)]^2}{E_0 [\exp(\tau T)]} \]
\[= E_0 [T] - E_0 [\tau T]^2 = \text{Var}_\tau [T] \]

e. So \(\frac{d}{d\tau} E_\tau [T] = \text{Var}_\tau [T] \)
f. If \(H_0: \tau = 0, H_A: \tau = \theta \), then for small \(\theta \),
\[\sigma_0^2 = \sigma_A^2, \mu_A - \mu_0 = \sigma_0^2 \theta \]
g. Power is \(\Phi(\sigma_0 \theta - z_\alpha) \)

9. Mantel–Haenszel example:
 a. \(T = \) sum of upper right corners
 b. \(\sigma_0 = \sqrt{\sum_i \frac{X_{i+}^i X_{i+}^i X_{i+} X_{i+}^i}{X_{i+} X_{i+} X_{i+} - 1}} \)
 c. \(X_{0+}, X_{1+}, \) and \(X_{++} \) fixed in advance.
 d. \(X_{+j} \) should be replaced by \(X_{++} \pi_{+j} \)

10. Mantel-Haentzel Example: Henhouse data set
 a. Six labs, and expect 9 control and 9 treatment chicks per lab
 i. So \(X_{0+}^i = X_{i+}^i = 9 \)
 b. Expect null proportions of abnormalities to be \(1/9 \) to \(6/9 \),
 i. So null column totals are \(X_{1+0}^i = (2, 4, 6, 8, 10, 12), \)
 \(X_{1+1}^i = (16, 14, 12, 10, 8, 6) \).