E. Power for approximately χ² tests
1. \(T = X^T X = \sum_{j=1}^{K-1} X_j^2, \ X_j \sim N(\mu_j, 1) \), independent, \(H_0: \mu_j = 0 \forall j \)
2. MGF for addend \(k \) is \(M(\tau, \mu_k) = \exp(\mu_k^2 \tau / (1 - 2\tau)) (1 - 2\tau)^{-1/2} \)
3. MGF for \(T \) is \(M(\tau) = \prod_{k=0}^{K-1} \exp(\mu_k^2 \tau / (1 - 2\tau)) (1 - 2\tau)^{-1/2} \) for \(\omega = \sum_{k=0}^{K-1} \mu_k^2 \).
4. \(\omega \) is called the noncentrality parameter.
5. Often statistics are of the form \(Y^T Y \) for \(Y = AX \), where \(A \) satisfies \(x^T A^T Ax = x^T x \) for all \(x \).
6. Let \(\eta = E[Y] = A \mu \).
7. Hence \(\eta^T \eta = \mu^T \mu = \omega \).
8. Goodness of Fit:
 a. Null proportions \(\pi_k^0 \)
 b. Alternate proportions \(\pi_k^A \)
 c. Total sample size \(N \).
 d. Under \(H_A \), \(E \left[(X_k - N \pi_k^0) / \sqrt{N \pi_k^0} \right] = \)
 \(E \left[(X_k - N \pi_k^A) / \sqrt{N \pi_k^A} + \sqrt{N (\pi_k^A / \sqrt{\pi_k^A} - \pi_k^0 / \sqrt{\pi_k^0})^2} \right] = \) \(N \sum_{k=0}^{K-1} (\pi_k^A / \sqrt{\pi_k^A} - \pi_k^0 / \sqrt{\pi_k^0})^2 \)
 e. So \(\omega = N \sum_{k=0}^{K-1} (\pi_k^A / \sqrt{\pi_k^A} - \pi_k^0 / \sqrt{\pi_k^0})^2 \)
 f. Cohen calls \(\sqrt{\omega} \) before multiplying by \(N \) the effect size.
 A: 7-7.1

VIII. Models and Graphs

Lecture 8

Fig. 11: Graphical Representation of Some Models

All models contain main effects

Z

∅

W

Z

∅

W

No interactions

W, X, Y interactions

W

∅

X

Y

∅

W

X

Y

W

Z

X

Y

Z

W

X

Y

Z

W, X, Y, Z interactions

\(\alpha_w^W + \alpha_x^X + \alpha_y^Y + \alpha_{wx}^W + \alpha_{xy}^X \)

b. In full multinomial model, \(\Pr [W = w, X = x, Y = y] = \exp(a_w^W + a_x^X + a_y^Y + a_{wx}^W + a_{xy}^X) / C \) for \(C = \sum_{s,t,u} \exp(a_s^W + a_t^X + a_u^Y + a_{st}^W + a_{su}^X + a_{tu}^Y) / C \).

c. In full multinomial model, \(\Pr [X = x] = \exp(a_x^X) / \sum_s \exp(a_s^W + a_t^X + a_u^Y + a_{st}^W + a_{su}^X + a_{tu}^Y) / C \).

d. In full multinomial model, \(\Pr [W = w, Y = y | X = x] = \exp(a_w^W + a_{wx}^W) / \sum_t \exp(a_t^X + a_{su}^X) / C \)

\(\sum_t \exp(a_t^X + a_{su}^X) / \sum_t \exp(a_t^X + a_{su}^X) \)

e. \(W \perp Y | X \) (ie., \(W \) is independent of \(Y \) conditional on \(X \))

3. Works for sets of variables rather than just variables if model is graphical.

4. Example: \(W \) \(X \) \(Y \)
 a. Hence model is \(\log(\lambda_{wxy}) = \)