IX. Polytomous Regression:

A. Parameterization in general:
1. Take a probability associated with category \(j \) for individual \(k \)
2. Make it depend on covariates \(x_k \) through parameters \(\beta_j \)
3. Often force some components of \(\beta_j \) not to depend on \(j \)
 a. Generally first component of \(x_k \) is 1
 b. Hence first component of \(\beta_j \) is intercept
 i. Generally intercept depends on \(j \)
 ii. Generally the other components do not.

B. Baseline-Category logits
1. \(\log(P[Y_k = j]/P[Y_k = 0]) = \beta_j x_k \)
 a. \((1 + \sum_{j>0} \exp(\beta_j x_k))P[Y_k = 0] = 1\)
 b. \(P[Y_k = 0] = 1/(1 + \sum_{j>0} \exp(\beta_j x_k))\)
2. \(\log(P[Y_k = j]/P[Y_k = l]) = (\beta_j - \beta_l) x_k \)

C. How do I fit this?
1. Series of separate logistic regressions conditional on sum of that category and baseline category.
 a. Let \(Z_{kj} = \begin{cases} 1 & \text{if } Y_k = j \\ 0 & \text{otherwise} \end{cases} \)
 b. \(L_j(\beta_j) = \prod_k P[Y_k = 0]^{Z_{k0}} P[Y_k = j]^{Z_{kj}} \)
 c. \(\ell_j(\beta_j) = \sum_k[Z_{k0} \log(P[Y_k = 0])] + \sum_k[Z_{kj} \log(P[Y_k = j])] + \sum_k[Z_{kj} \beta_j x_k - (Z_{k0} + Z_{kj}) \log(1 + \exp(\beta_j x_k))] \)
 d. \(\ell_j'(\beta_j) = \sum_k[Z_{kj} - (Z_{k0} + Z_{kj}) \exp(\beta_j x_k)/[1 + \exp(\beta_j x_k)]^{-1} x_k = \sum_k[Z_{kj} - (Z_{k0} + Z_{kj}) \pi_k] x_k \)

2. All at once:
 a. \(L(\beta_1, \beta_2, \ldots, \beta_{J-1}) = \prod_k \prod_j P[Y_k = j]^{Z_{kj}} \)
 b. \(\ell = \sum_k \sum_j Z_{kj} \log(P[Y_k = j]^{Z_{kj}}) \)
 c. \(\frac{d}{d\beta_j} \ell = \sum_k [Z_{kj} \beta_j x_k + \sum_j Z_{kj} \log(P[Y_k = 0]^{Z_{kj}})] \)
 d. \(= \sum_k [Z_{kj} \beta_j x_k - \sum_j Z_{kj} \log(1 + \sum_j \exp(\beta_j x_k))] \)
 e. \(= \sum_k \frac{d}{d\beta_j} l = \sum_k [Z_{kj} - \sum_j Z_{kl} \pi_{lk}] x_k \)
 i. \(\pi_{jk} = \exp(\beta_j x_k)/[1 + \sum_{l>0} \exp(\beta_l x_k)] \)

3. I don’t know how to fit this model in SAS or R.

D. Cumulative logits:
1. Suppose \(\beta_j = (\theta_j, \alpha) \).
2. Suppose that \(W_k - \alpha x_k \) has CDF \(\exp(w)/(1 + \exp(w)) \)
 a. Mean 0, standard deviation 1.8138
3. Pick an increasing sequence \(\theta_j \)
4. Suppose that \(Y_k = j \) if \(W_k \in [\theta_{j-1}, \theta_j) \).
5. \(P[Y_k = j] = (1 + \exp(\theta_j + \alpha x_k))^{-1} \)
6. \(P[Y_k \leq j] = \exp(\theta_j + \alpha x_k)/(1 + \exp(\theta_j + \alpha x_k))^{-1} \)
7. \(\log(P[Y_k > j]/P[Y_k \leq j]) = \theta_j + \alpha x_k \) : cumulative logit model

E. Complementary Log-Log Link:
1. Previous analysis, with CDF \(1 - \exp(-\exp(x)) \)
 a. Mean -0.577216, standard deviation 1.28255
2. \(\log(-\log(P[Y_k > j])) = \theta_j + \alpha x_k \)