XI. Exact Methods

Lecture 11

4. Remove effect of unknown parameters:

7.

1. Model:

4. Model probability for item j beating k as

$$\exp(\beta_j - \beta_k)/(1 + \exp(\beta_j - \beta_k))$$

5. Adding a constant to each of the β keeps probabilities teh same

a. Hence one of the items must be taken as baseline

b. Note that $P[j$ beats $k] = 1 - P[k$ beats $j]$ as it should.

7. β_k represents strength of item k

8. Can add intercept for “home team advantage”

9. Model fit is same as for quasi-symmetry model

A: 5.4.2–5.4.3

XI. Exact Methods

A. Contingency tables:

1. Model:

a. $X_{ij} \sim \mathcal{P}(\lambda_{ij})$

b. $\log(\lambda_{ij}) = \alpha_i + \beta_j + \gamma_{ij}$

c. $\beta_j = 0$, $\gamma_{ij} = 0 \forall i, j$

2. $H_0 : \gamma_{ij} = 0 \forall i, j$ vs. $H_A : \gamma_{ij} \neq 0$ for some i, j

3. Test statistics:

a. Score statistic is Pearson χ^2:

$$T = \sum_{i,j} (X_{ij} - X_i X_j / X.)^2 / (X_i X_j / X.)$$

b. LR statistic

c. Fisher’s statistic $1/P[X]$

4. Remove effect of unknown parameters:

a. Remove α_i by conditioning on X_i

- That is, note that for any common π^0 value,

$$P_{\pi^0} \left[\sup_{\pi \in [0,1]} P_{\pi} [Z \geq z] \right] \leq \sup_{\pi \in [0,1]} P_{\pi} [Z \geq z]$$

- Convexity condition: If test rejects for (x_1, x_2), then test rejects for more extreme $(x_1, x_2 + 1)$ and $(x_1 + 1, x_2)$

- Extend to p-values: $p(x_1, x_2) \geq p(x_1, x_2 + 1)$ and $p(x_1, x_2) \geq p(x_1 + 1, x_2)$

- Implies that one need only look along boundary of alternative hypothesis for maximizer.

- That is, p-value is the same whether we test $H_0 : \delta = \delta_0$ vs $H_A : \delta > \delta_0$ or $H_0 : \delta < \delta_0$ vs $H_A : \delta > \delta_0$

- Heuristically, because rejection region probabilities become less

- Need to check for convexity: Z statistics, Fisher’s exact test all work.

- Can also phrase question in terms of relative risk π_2/π_1

6. Computation

a. Either enumerate all tables, and calculate probabilities straight–forwardly, or

b. (Pagano and Halvorsen, 1981) calculate recursively

1. $P[X_{11} = x_{11} | X_1, X_j \forall i, j]$

$$= \frac{x_{11}!(x_{1} - x_{11})!(x_{.} - x_{11})!}{x_1!(x_{11} - x_{11})!(x_{1} - x_{11})!(x_{.} - x_{1})!}$$

- Probabilities do not depend on other aspects of conditioning event.
ii. \(P[V = v|U = u] = \frac{c(u, bv) \exp(v\tau)}{\sum_v c(u, bv) \exp(v\tau)} \)

So we need algorithm to generate list of \(v \) consistent with \(u \), and to calculate \(c(u, v) \) for these \(u \).

h. Let
 i. \(\Omega_i \) be sample space using observations 1, \ldots, \(i \), satisfying conditioning statement.
 ii. \(c_i \) be counts of \(X_1, \ldots, X_i \) ensembles giving \(t \)
 i. Note that
 i. \(\Omega_1 = \{0, z_1\} \)
 ii. \(c_1(0) = c_1(z_1) = 1 \).
 iii. \(\Omega_i = \Omega_{i-1} \cup (z_i + \Omega_{i-1}) \)
 • After removing duplicates
 iv. \(c_i(t) = c_{i-1}(t) + c_{i-1}(t - z_i) \)

j. Collects all possible \(t \)
 i. Excessive: we only need vectors consistent with conditioning event.
 ii. Algorithm more efficient if we can eliminate from \(\Omega_i \) many entries that can never satisfy conditioning event.
 iii. Easiest condition to implement: dump those if component gets too large or small.

This page intentionally left blank.

This page intentionally left blank.