XI. Multivariate Analysis:

A. Problem:

1. \(X_{ij} \): Multiple \(J \) responses for each subject \(i \).
2. Explain whole distribution of \(X_{ij} \) in terms of covariates.
 a. covariates often indicate group membership

B. Simple case: one sample.

1. Model: \(X_i \sim F_X(x) \)
2. Normal case, known variance \(\Sigma \):
 a. Let \(\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \)
3. Null hypothesis: marginal medians take on prespecified values
 a. WLOG, value is zero.
 b. That is, \(F_X(\infty, \ldots, \infty, 0, \infty, \ldots, \infty) = \frac{1}{2} \) for each possible slot for zero.
 c. Less sloppily, let
 i. \(z_j \) be the vector with \(j \) components,
 ii. with all components \(\infty \) except for that in component \(j \)
 iii. \(H_0 : F_X(z_j) = \frac{1}{2} \)
4. Normal case:

a. Let $\bar{X} = \sum_{i=1}^{n} X_i / n$

b. Σ known: $\bar{X}^\top \Sigma^{-1} \bar{X} \sim \chi^2_J$, if Σ nonsingular.

c. Σ unknown: estimate using usual sum of squares:

\[\bar{X}^\top \Sigma^{-1} \bar{X} \sim F_{J,?}, \text{ if } \Sigma \text{ nonsingular}. \]

d. Σ unknown, but sum of squares estimator not appropriate:

\[\bar{X}^\top \Sigma^{-1} \bar{X} \sim \chi^2_J, \text{ approximately.} \]

e. Techniques require multivariate normality, which is stronger than marginal normality. [Mark A R]

a. Sign test, or signed rank test assuming symmetry (often in the context of paired data).

i. Solution depends on approximate normality of T

ii. We’ve claimed before that the components of T are separately approximately normal, by reference to a CLT

iii. Similar arguments work for the vector as a whole.

b. Difficulties:

i. Separate tests are generally dependent, and dependence
structure depends on distribution of raw observations.

- We will have to estimate this.

ii. Null hypothesis dependent on the coordinate system for variables, but analysis does not.

- Ex. If \((X_i, Y_i) \sim \mathcal{N}(\mu, \Sigma)\) with \(\Sigma\) known, and \(H_0 : \mu = 0\), then the canonical test is \((X_i, Y_i)\Sigma^{-1}(X_i, Y_i)^\top\), and it is unchanged if we base test on \((U_i, V_i)\) for \(U_i = X_i + Y_i\) and \(V_i = X_i - Y_i\).

c. Solution for sign test:

i. Let \(T_j = \sum_i \hat{s}(X_{ij})\) for \(\hat{s}(u) = \begin{cases} 1 & \text{if } u > 0 \\ -1 & \text{if } u < 0 \end{cases}\).

ii. Then under \(H_0\), \(T_j / \sqrt{n} \approx \mathcal{N}(0, 1)\).

iii. Estimate \(\text{Cov}[\hat{s}(X_{ij}), \hat{s}(X_{ij'}))] = E[\hat{s}(X_{ij})\hat{s}(X_{ij'}))]\) by \(\hat{\sigma}_{jj'} = \sum_i \hat{s}(X_{ij})s(X_{ij'})/n\).

iv. So test using \(T^\top \begin{pmatrix} 1 & \hat{\sigma}_{12} & \cdots \\ \hat{\sigma}_{21} & 1 & \cdots \\ \vdots & \ddots & \ddots \end{pmatrix}^{-1} T/n \sim \chi^2_J\) under \(H_0\).

d. Solution for Wilcoxon signed rank test is similar. [Mark B R]

[Mark B sas]

6. Permutation Solution:

a. Select an existing test statistic
C. Confidence Regions for parameter vector μ

1. Introduce shift parameter to move data to conventional null hypothesis; for ex.,

 a. One-sample: $X \mapsto X - 1_n \otimes \mu$

 i. 1_n is vector of ones of length n

 ii. \otimes is outer product, so $1 \otimes \mu_n$ is the matrix with entry μ_j in column j for all rows.

 b. Two-sample: $(X, Y) \mapsto (X, Y - 1_n \otimes \mu)$

2. Calculate test statistic $T(\mu)$ using shifted data

3. Determine critical value for test statistic, $t_{1-\alpha}$

4. Report as confidence region $\{\mu | T(\mu) \leq t_{1-\alpha}\}$.

5. A case for which the test inversion approach is problematic.

 a. Setup: \bar{X}, \bar{Y} independent normals, mean μ and ν and
variance σ^2/n

b. CI for $\rho = \mu/\nu$.

c. Invert $\sqrt{n}(\bar{X} - \rho\bar{Y})/(\sigma\sqrt{1 + \rho^2})$

d. CI is $\{\rho : n(\bar{X} - \rho\bar{Y})^2/\sigma^2(1 + \rho^2) \leq z^2\}$.

i. Simplest case $\sigma = 1, n = 1$.

ii. $\rho \in (\bar{X}/\bar{Y} \mp z/\bar{Y}\sqrt{(\bar{X}/\bar{Y})^2 + 1 - (z/\bar{Y})^2})/(1 - (z/\bar{Y})^2)$, only if $\bar{Y}^2 > z^2$

iii. If $\bar{X}^2 + \bar{Y}^2 < z^2$ no solution exists, and CI is entire line, since inequality never holds with equality.

iv. If $\bar{X}^2 + \bar{Y}^2 \geq z^2$ but $\bar{Y}^2 \leq z^2$, then CI is a union of two rays.

e. Similar approach holds in cases when \bar{X} and \bar{Y} are bivariate normal with nonzero correlation, and when σ is unknown.

D. Next Easiest case: covariate represents membership in one of two groups

1. In this case, represent group one as X_{ij} and group 2 as Y_{ij}.

 a. H_0: mean vectors are the same,

 b. Sample sizes m and n.
2. Traditional normal-theory approach:

i. Let $C_{X,u,v}$ be the sample covariance for the X's between responses u and v:
$$
\sum_{i=1}^{m} (X_{iu} - \bar{X}_u)(X_{iv} - \bar{X}_v)/(m - 1).
$$

ii. Let $C_{Y,u,v}$ be the sample covariance for the Y's between responses u and v:
$$
\sum_{i=1}^{n} (Y_{iu} - \bar{Y}_u)(Y_{iv} - \bar{Y}_v)/(n - 1).
$$

iii. Let $C_{u,v}$ be the pooled sample covariance for all observations:
$$
C_{u,v} = ((m - 1)C_{X,u,v} + (n - 1)C_{Y,u,v})/(m + n - 2).
$$

a. Hotelling's $T^2 = \frac{mn}{m+n}(\bar{X} - \bar{Y})^\top C^{-1}(\bar{X} - \bar{Y})$ measures difference between sample mean vectors,

i. In a way that accounts for sample variance,

ii. and combines the response variables.

b.
$$
\frac{m+n-J-1}{(m+n-2)J}T^2 \sim F_{J,m+n-J-1} \text{ if }
$$

i. (X_{i1}, \ldots, X_{iJ}) and (Y_{i1}, \ldots, Y_{iJ}) multivariate normal

ii. variance matrices are the same. \[\text{Mark E R}\] [Mark E sas]

3. permutation test

a. Under H_0, vectors are all independent and identically distributed.
b. Can calculate p-value by counting the permutations between groups (keeping vector together) that gives as large or larger T^2.

c. Other test statistics combining component-wise results:

i. Max t-statistic:
 - Do univariate t-statistics for each response.
 - Report maximum.

ii. Max absolute value of t-statistic:
 - Like above, but take $|\cdot|$ before optimizing.

iii. Max of Wilcoxon statistics or absolute value of Wilcoxon statistics

iv. Rank version: sub ranks for data values, and proceed as before.
 - Makes statistic less sensitive to extreme values.
 - Doesn’t appear to make it fit distributional assumptions.
 - Can also use rank scores. [Mark F R] [Mark F sas]: 6.2

4. Normal-theory Rank based approach

 a. Let W_j be Mann-Whitney-Wilcoxon statistic using manifest variable j, for $j \in \{1, \ldots, J\}$.
Let $\mathbf{W} = (W_1, \ldots, W_J)$, $\mathbf{\Psi} = \text{Var}[\mathbf{W}] = \begin{pmatrix} \sigma_{11} & \cdots & \sigma_{1J} \\ \vdots & \ddots & \vdots \\ \sigma_{J1} & \cdots & \sigma_{JJ} \end{pmatrix}$.

- σ_{jj} are all known (to equal $mn(n + m + 1)/12$, but that’s not important here).

i. Remaining entries of $\mathbf{\Psi}$ must be estimated.

- For $i = 1, \ldots, m + n$, let F_{ij} be the number of observations in group 2 that beat observation i on variable j if i is in group 1, and the number of observations in group 1 that i beats on variable j, if i is in group 2.

- $4/(n + m)$ times Covariance matrix for F estimates the variance matrix of \mathbf{W}.

ii. Remember that F approximation requires multivariate normality for response variables.

iii. Rank scores don’t fix nonnormality in joint distribution structure.

c. Normal-theory Component-wise maxima require

i. Known variance case: Multivariate normal CDF with arbitrary variance-covariance matrix: doable.
ii. Unknown variance case: Multivariate normal CDF with arbitrary variance-covariance matrix: much harder.