XI. Multivariate Analysis:

A. Problem:
1. \(X_{ij} : \) Multiple (J) responses for each subject \(i\).
2. Explain whole distribution of \(X_{ij}\) in terms of covariates.
 a. covariates often indicate group membership

B. Simple case: one sample.
1. Model: \(X_i \sim F_X(x)\)
2. Normal case, known variance \(\Sigma\):
 a. Let \(X = \sum_{i=1}^{n} X_i/n\)
3. Null hypothesis: marginal medians take on prespecified values
 a. WOLOG, value is zero.
 b. That is, \(F_X(\infty, \ldots, \infty, 0, \infty, \ldots, \infty) = \frac{1}{2}\) for each possible slot for zero.
 c. Less sloppily, let
 i. \(z_j\) be the vector with \(j\) components,
 ii. with all components \(\infty\) except for that in component \(j\)
 iii. \(H_0 : F_X(z_j) = \frac{1}{2}\)
4. Normal case:
 a. Let \(X = \sum_{i=1}^{n} X_i/n\)
 b. \(\Sigma\) known: \(X^\top \Sigma^{-1} X \sim \chi^2_j\), if \(\Sigma\) nonsingular.
 c. \(\Sigma\) unknown: estimate using usual sum of squares: \(\bar{X} \Sigma^{-1} \bar{X} \sim \chi^2_j\), if \(\Sigma\) nonsingular.
 d. \(\Sigma\) unknown, but sum of squares estimator not appropriate: \(X^\top \Sigma^{-1} X \sim \chi^2_j\), approximately.

iv. So test using \(T^\top \begin{pmatrix} 1 & \sigma_{12} & \cdots \\ \sigma_{21} & 1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}^{-1} T/n \sim \chi^2_j\)
 under \(H_0\).

d. Solution for Wilcoxon signed rank test is similar. [Mark B R]

6. Permutation Solution:
 a. Select an existing test statistic
 i. Hotelling
 ii. Rank-based
 iii. etc.
 b. Compare value against permutation distribution
 i. Randomly reassign signs of observation vectors as a whole. [Mark H R]

C. Confidence Regions for parameter vector \(\mu\)
1. Introduce shift parameter to move data to conventional null hypothesis; for ex.,
 a. One-sample: \(X \rightarrow X - 1_n \otimes \mu\)
 i. \(1_n\) is vector of ones of length \(n\)
 ii. \(\otimes\) is outer product, so \(1 \otimes \mu_n\) is the matrix with entry \(\mu_j\) in column \(j\) for all rows. [Mark C R]
 b. Two-sample: \((X, Y) \rightarrow (X - 1_n \otimes \mu, Y - 1_n \otimes \mu)\)
2. Calculate test statistic \(T(\mu)\) using shifted data
3. Determine critical value for test statistic, \(t_{1-\alpha}\)
4. Report as confidence region \(\{\mu | T(\mu) \leq t_{1-\alpha}\}\).
5. A case for which the test inversion approach is problematic.

e. Techniques require multivariate normality, which is stronger than marginal normality. [Mark A R]

5. Nonparametric Solution: combine univariate rank statistics for marginal test \(T\).
 a. Sign test, or signed rank test assuming symmetry
 (often in the context of paired data).
 i. Solution depends on approximate normality of \(T\)
 ii. We’ve claimed before that the components of \(T\) are separately approximately normal, by reference to a CLT
 iii. Similar arguments work for the vector as a whole.

b. Difficulties:
 i. Separate tests are generally dependent, and dependence structure depends on distribution of raw observations.
 ii. We will have to estimate this.
 iii. Null hypothesis dependent on the coordinate system for variables, but analysis does not.

 • If \((X_i, Y_i) N(\mu, \Sigma)\) with \(\Sigma\) known, and \(H_0 : \mu = 0\), then the canonical test is \((X_i, Y_i) \Sigma^{-1}(X_i, Y_i)^\top\), and it is unchanged if we base test on \((U_i, V_i)\) for \(U_i = X_i + Y_i\) and \(V_i = X_i - Y_i\).

 c. Solution for sign test:
 i. Let \(T_j = \sum_i \tilde{s}(X_{ij})\) for \(\tilde{s}(u) = \begin{cases} 1 & \text{if } u > 0 \\ -1 & \text{if } u < 0 \end{cases}\)
 ii. Then under \(H_0\), \(T_j/\sqrt{n} \approx N(0, 1)\).
 iii. Estimate \(\text{Cov}[\tilde{s}(X_{ij}), \tilde{s}(X_{ij'})] = E[\tilde{s}(X_{ij})\tilde{s}(X_{ij'})]\) by \(\tilde{\sigma}_{jj'} = \sum_i \tilde{s}(X_{ij})\tilde{s}(X_{ij'})/n\).

a. Setup: \(\bar{X}, \bar{Y}\) independent normals, mean \(\mu\) and variance \(\sigma^2/n\)

b. CI for \(\rho = \mu/\nu\).

c. Invert \(\sqrt{n}(\bar{X} - \rho \bar{Y})/(\sigma \sqrt{1 + \rho^2})\)

d. CI is \(\{\rho : n(\bar{X} - \rho \bar{Y})^2/2(1 + \rho^2) \leq z^2\}\).
 i. Simplest case \(\sigma = 1, n = 1\).
 ii. \(\rho \in (\bar{X}/\bar{Y} \pm z/\bar{Y}\sqrt{\bar{X}/\bar{Y}^2 + 1 - (z/\bar{Y})^2}/1 - (z/\bar{Y})^2\) only if \(Y^2 > z^2\)
 iii. If \(X^2 + Y^2 < z^2\) no solution exists, and CI is entire line, since inequality never holds with equality.
 iv. If \(X^2 + Y^2 \geq z^2\) but \(Y^2 \leq z^2\), then CI is a union of two rays.
 e. Similar approach holds in cases when \(\bar{X}\) and \(\bar{Y}\) are bivariate normal with nonzero correlation, and when \(\sigma\) is unknown. [Mark D R]

D. Next Easiest case: covariate represents membership in one of two groups
1. In this case, represent group one as \(X_{ij}\) and group 2 as \(Y_{ij}\).
 a. \(H_0\): mean vectors are the same,
 b. Sample sizes \(m\) and \(n\).

2. Traditional normal-theory approach:
 i. Let \(C_{X_{u,v}}\) be the sample covariance for the \(X\)’s between responses \(u\) and \(v\):
 \(\sum_{i=1}^{m}(X_{iu} - X_{u})(X_{iv} - X_{v})/(m - 1)\).
 ii. Let \(C_{Y_{u,v}}\) be the sample covariance for the \(Y\)’s between responses \(u\) and \(v\):
\[
\sum_{i=1}^{n}(Y_{iu} - \bar{Y}_u)(Y_{iv} - \bar{Y}_v)/(n-1).
\]

iii. Let \(C_{u,v} \) be the pooled sample covariance for the all observations:
\[
C_{u,v} = ((m-1)C_{X,u,v} + (n-1)C_{Y,u,v})/(m+n-2).
\]

a. Hotelling’s \(T^2 = \frac{mn}{m+n} (\bar{X} - \bar{Y})^\top C^{-1} (\bar{X} - \bar{Y}) \)
measures difference between sample mean vectors.

i. In a way that accounts for sample variance.

ii. and combines the response variables.

b. \(\frac{m+n-J-1}{(m+n-2)} T^2 \sim F_{J,m+n-J-1} \) if
i. \((X_{i1}, \ldots, X_{ij})\) and \((Y_{i1}, \ldots, Y_{ij})\) multivariate normal

ii. variance matrices are the same.

3. permutation test
a. Under \(H_0 \), vectors are all independent and identically distributed.

b. Can calculate p-value by counting the permutations between groups (keeping vector together) that gives as large or larger \(T^2 \).

c. Other test statistics combining component-wise results:

i. Max \(t \)-statistic:
 - Do univariate \(t \)-statistics for each response.
 - Report maximum.

ii. Max absolute value of \(t \)-statistic:
 - Like above, but take \(|t|\) before optimizing.

iii. Max of Wilcoxon statistics or absolute value of Wilcoxon statistics

iv. Rank version: sub ranks for data values, and proceed as before.
 - Makes statistic less sensitive to extreme values.
 - Doesn’t appear to make it fit distributional assumptions.
 - Can also use rank scores.

4. Normal-theory Rank based approach
a. Let \(W_j \) be Mann-Whitney Wilcoxon statistic using manifest variable \(j \), for \(j \in \{1, \ldots, J\} \).

b. Let \(W = (W_1, \ldots, W_J) \).

\[
\Psi = \text{Var}[W] = \begin{pmatrix}
\sigma_{11} & \cdots & \sigma_{1J} \\
\vdots & \ddots & \vdots \\
\sigma_{J1} & \cdots & \sigma_{JJ}
\end{pmatrix}
\]

- \(\sigma_{jj} \) are all known (to equal \(mn(n+m+1)/12 \), but that’s not important here).

i. Remaining entries of \(\Psi \) must be estimated.

- For \(i = 1, \ldots, m+n \), let \(F_{ij} \) be the number of observations in group 2 that beat observation \(i \) on variable \(j \) if \(i \) is in group 1, and the number of observations in group 1 that \(i \) beats on variable \(j \), if \(i \) is in group 2.

- \(4/(n+m) \) times Covariance matrix for \(F \) estimates the variance matrix of \(W \).

ii. Remember that \(F \) approximation requires multivariate normality for response variables.

iii. Rank scores don’t fix nonnormality in joint distribution structure.

iv. Normal-theory Component-wise maxima require
 i. Known variance case: Multivariate normal CDF with arbitrary variance-covariance matrix: doable.
 ii. Unknown variance case: Multivariate normal CDF with arbitrary variance-covariance matrix: much harder.