1.2 Review: Kalman Filter

Linear and Gaussian System:

state equation: \(x_t = H_t x_{t-1} + W_t w_t \) where \(w_t \sim N(0, I) \)

observation equation: \(y_t = G_t x_t + V_t v_t \) where \(v_t \sim N(0, I) \).

Examples:

- Local level structural model

 state equation \(m_t = m_{t-1} + \varepsilon_t \)

 observation equation \(y_t = m_t + e_t \)

 Example: \(y_t \): realized volatility. \(m_t \) underlying true volatility
• (random) varying coefficient linear models

state equation \(\beta_{i,t} = \beta_{i,t-1} + \varepsilon_{i,t} \)

observation equation \(y_t = \sum_{i=1}^{d} \beta_{i,t} x_{i,t} + e_t \)

– Example: varying beta in CPAM:

\(y_t = \alpha_t + \beta_t M_t + e_t, \quad \alpha_t = \alpha_{t-1} + \varepsilon_{1,t} \quad \beta_t = \beta_{t-1} + \varepsilon_{2,t} \)

• AR process observed with noise

\[
\begin{bmatrix}
 x_{t-p+1} \\
 x_{t-p+2} \\
 \vdots \\
 x_{t-1} \\
 x_t
\end{bmatrix}
= \begin{bmatrix}
 0 & 1 & 0 & \cdots & 0 \\
 0 & 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 0 & 0 & 0 & \cdots & 1 \\
 \phi_p & \phi_{p-1} & \phi_{p-2} & \cdots & \phi_1
\end{bmatrix}
\begin{bmatrix}
 x_{t-p} \\
 x_{t-p+1} \\
 \vdots \\
 x_{t-1} \\
 x_t
\end{bmatrix}
+ \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 1
\end{bmatrix}
\varepsilon_t
\]

observation \(y_t = x_t + e_t \)
ARIMA models: $\phi(B)x_t = \theta(B) \varepsilon_t$

$$x_t = \phi_1 x_{t-1} + \ldots + \phi_p x_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \ldots + \theta_q \varepsilon_{t-q}.$$

Let $\phi(B)z_t = \varepsilon_t$ and $x_t = \theta(B)z_t$, then $\phi(B)x_t = \theta(B) \varepsilon_t$.

Assume $q < p$.

$$\begin{bmatrix} z_{t-p+1} \\ z_{t-p+2} \\ \vdots \\ z_{t-1} \\ z_t \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \phi_p & \phi_{p-1} & \phi_{p-2} & \cdots & \phi_1 \end{bmatrix} \begin{bmatrix} z_{t-p} \\ z_{t-p+1} \\ \vdots \\ z_{t-2} \\ z_{t-1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \varepsilon_t$$

and

$$x_t = [\theta_{p-1}, \theta_{p-2}, \ldots, \theta_1, 1] \begin{bmatrix} z_{t-p+1} \\ z_{t-p} \\ \vdots \\ z_{t-1} \\ z_t \end{bmatrix}$$
Linear and Gaussian System:

state equation: \[x_t = H_t x_{t-1} + W_t w_t \] where \(w_t \sim N(0, I) \)

observation equation: \[y_t = G_t x_t + V_t v_t \] where \(v_t \sim N(0, I) \).

Under this model, we have

\[p(x_t \mid y_1, \ldots, y_t) \sim N(\mu_t, \Sigma_t) \]

How to obtain \(\mu_t \) and \(\Sigma_t \) (recursively)?
Two useful facts about joint Normal distribution

(1) If \((X, Y) \sim N(\mu_x, \mu_y, \Sigma)\), then

\[
E(X \mid Y) = \mu_x - \Sigma_{xy}\Sigma_{yy}^{-1}(y - \mu_y)
\]

\[
V(X \mid Y) = \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}
\]

(2) If \(X \sim N(\mu_x, \Sigma_x)\) and \(Y = GX + Vv\) where \(v \sim N(0, I)\), what is \(p(X \mid Y) \propto p(Y \mid X)p(X)\)?

First, find the joint distribution of \((X, Y) \sim N(\mu_x, \mu_y, \Sigma)\)

\[
\mu_x = \mu_x \quad \text{and} \quad \Sigma_{xx} = \Sigma_x
\]

\[
\mu_y = E[Y] = E[GX + Vv] = GE[X] = G\mu_x
\]

\[
\Sigma_{xy} = E[(X - \mu_x)(Y - \mu_y)'] = E[(X - \mu_x)((X - \mu_x)'G' + v'V')] = \Sigma_x G'
\]

\[
\Sigma_{yx} = G\Sigma_x
\]

\[
\Sigma_{yy} = E[(Y - \mu_y)(Y - \mu_y)'] = E[G(X - \mu_x)(X - \mu_x)'G' + Vv v'V']
\]

\[
= G\Sigma_x G' + VV'
\]
Kalman Filter:

Suppose at time \(t - 1 \) we have obtained \(\mu_{t-1} \) and \(\Sigma_{t-1} \). That is,

\[
p(x_{t-1} \mid y_1, \ldots, y_{t-1}) \sim N(\mu_{t-1}, \Sigma_{t-1}).
\]

- Before we observe \(y_t \), we can use the state equation to predict \(x_t \). That is,

\[
p(x_t \mid y_1, \ldots, y_{t-1}) \sim N(\mu_{t-1}^t, \Sigma_{t-1}^t)
\]

Note:

\[
p(x_t \mid y_1, \ldots, y_{t-1}) = \int p(x_t \mid x_{t-1}, y_1, \ldots, y_{t-1}) dx_{t-1}
\]

\[
= \int p(x_t \mid x_{t-1})p(x_{t-1} \mid y_1, \ldots, y_{t-1})dx_{t-1}
\]

Since

\[
x_t = H_t x_{t-1} + W_t w_t, \quad \text{we have} \quad x_t \sim N(H_t \mu_{t-1}, H_t \Sigma_{t-1} H_t' + W_t W_t')
\]

Hence \(\mu_{t}^{t-1} = H_t \mu_{t-1}, \Sigma_{t}^{t-1} = H_t \Sigma_{t-1} H_t' + W_t W_t' \)
• The observation equation says:

\[y_t = G_t x_t + V_t v_t \]

It provides additional information about \(x_t \) — or correction to the prediction.

• Bayes Theorem

\[
p(X \mid Y) \propto p(Y \mid X)p(X)
\]

or

\[
p(x_t \mid y_1, \ldots, y_t) \propto p(y_t \mid x_t, y_1, \ldots, y_t)p(x_t \mid y_1, \ldots, y_t-1)
\]

\[= p(y_t \mid x_t)p(x_t \mid y_1, \ldots, y_t-1)\]

We have

\[
\mu_t = \mu_{t-1} + K_t(y_t - G_t \mu_{t-1}) \quad \Sigma_t = \Sigma_{t-1} - K_t G_t \Sigma_{t-1}
\]

where \(K_t = \Sigma_{t-1} G_t' [G_t \Sigma_{t-1} G_t + V' V]^{-1} \).
Summary:

state equation: \(x_t = H_t x_{t-1} + W_t w_t \) where \(w_t \sim N(0, I) \)

observation equation: \(y_t = G_t x_t + V_t v_t \) where \(v_t \sim N(0, I) \).

Kalman Filter: \((\mu_{t-1}, \Sigma_{t-1})\) to \((\mu_t, \Sigma_t)\)

\[
\begin{align*}
\mu_t &= H_t \mu_{t-1} \\
\Sigma_t &= H_t \Sigma_{t-1} H_t' + W_t W_t' \\
K_t &= \Sigma_t \Sigma_t' \Sigma_t + V_t V_t' \Sigma_t^{-1} \Sigma_t^{-1} G_t \\
\end{align*}
\]

where

\[
K_t = \Sigma_t^{-1} G_t [G_t \Sigma_t^{-1} G_t + V_t V_t']^{-1}.
\]
Note:

- Kalman filter can be used to calculate the likelihood function
- Hence often used as an estimation tool
- It can also do smoothing \(p(x_t \mid y_1, \ldots, y_n) \) and prediction \(p(x_{t+d} \mid y_1, \ldots, y_t) \).

For nonlinear systems: Use approximation

- Extended Kalman filter
- etc
Kalman Filter R implementation:

- *KalmanLike*
- *KalmanRun*
- *KalmanSmooth*
- *KalmanForecast*
1.3 Review: Basic Monte Carlo Methods

Statistical Inferences:

- Distribution: $p(\cdot, \theta)$ with unknown θ
- Objective: estimate θ.
- Observe: X_1, \ldots, X_n i.i.d.
- Method: M.L.E. or other

Monte Carlo Methods:

- Distribution: $p(\cdot, \theta)$ with known θ
- Objective: calculate $E(h(X))$
- Generate: X_1, \ldots, X_n i.i.d from $p(\cdot, \theta)$
- Method: $\sum_{i=1}^{n} h(X_i)/n$ (or improved version)
Simple methods of generating random samples:

(1) **Transformation:**

If \(Y = f(X) \), and \(x \sim X \), then \(y = f(x) \sim Y \)

- **Example:** Normal(0,1): \(Y = \sqrt{-2\ln(X_1)\cos(2X_2)} \) where \(X_1, X_2 \) independent Uniform(0,1)

- **Example:** Normal(\(\mu, \sigma^2 \)). \(Y = \mu + \sigma X \), where \(X \sim N(0,1) \)

- **Example:** \(\chi^2_k \). \(Y = \sum_{i=1}^{k} X_i^2 \), where \(X_i \sim N(0,1) \), independent.
(2) **Inverse CDF:**

If X has a cdf F, then $F(X) \sim U(0, 1)$.

If $F(x)$ is strictly increase (in the range) then $F^{-1}(U) \sim X$ where $U \sim U(0, 1)$.

Example:

pdf: $p(x) = 2x$, $(0 < x < 1)$.

CDF: $F(x) = x^2$, $0 < x < 1$

Hence $X = \sqrt{U}$, $U \sim U(0, 1)$.
(3) **Rejection method:**

Example: pdf: \(p(x) = 2x, \ (0 < x < 1). \)

- Sample uniform points in the area.
- Accept the points under the density curve.
- The x-coordinate of the accepted points \(\sim X. \)
(4) Importance Sampling:

Example: pdf: $p(x) = 2x$, $(0 < x < 1)$.

- In the over-presented area, down weight the sample.
- In the under-presented area, up weight the sample

How?
Target distribution π; a sample x_1, \ldots, x_m from g.

$$E_\pi(f(X)) = \int f(x)\pi(x)dx = \int f(x)\frac{\pi(x)}{g(x)}g(x)dx = E_g(f(X)w(X))$$

where $w(x) = \pi(x)/g(x)$.

We have

$$\frac{1}{m} \sum_{i=1}^{m} w(x_i)f(x_i) \approx E_\pi(f(x))$$

Let weight $w_i \propto \pi(x_i)/g(x_i)$, we can use

$$\frac{1}{\sum w_i} \sum_{i=1}^{m} w_i f(x_i) \approx E_\pi(f(x))$$

Efficiency:

$$\text{effective sample size} = \frac{m}{1 + cv^2(w)}$$

Example: $m = 100$. use $U(0,1)$: ESS $= 78$; $N(0,1)$: ESS $= 24$
(5) **Sequential Sampling** \((X, Y) \sim p(x, y) \).

(i) : Sample \(X = x \) from the marginal distribution \(p(x) = \int p(x, y)dy \)

(ii) : Sample \(Y = y \) from the conditional distribution \(p(y \mid X = x) = p(x, y)/p(x) \)

Example:

\[
(X, Y) \sim N \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \right)
\]

(i) \(X = x \) from \(N(\mu_1, \sigma_1^2) \)

(ii) \(Y = y \) from \(N(\mu_2 - \rho \sigma_2 (x - \mu_1), (1 - \rho) \sigma_2^2) \).

Example: Time Series \(X_t = \phi X_{t-1} + e_t \) where \(e_t \sim N(0, \sigma^2) \)

(1) \(X_0 \) from \(N(\mu_0, \sigma_0^2) \) (often stationary dist)

(2) \(X_t \) from \(N(\phi X_{t-1}, \sigma^2) \)
(Augmentation:) Use sequential sampling when:

\(p_Y(y) \) is not easy, but \(p_X(x) \) and \(p(Y \mid X = x) \) are easy,

Example: \(Y = X_1 + \ldots + X_N \),

where \(X_i \) i.i.d. \(\sim Bernolli(p) \), and \(N \sim Poisson(\lambda) \).

(i) Sample \(N = n \sim Poisson(\lambda) \)

(ii) Sample \(Y \) from Binomial\((n, p)\)

Example: \(Y \sim pN(\mu_0, \sigma_0^2) + (1 - p)N(\mu_1, \sigma_1^2) \)

(i) Sample \(I = i \) from Bernoulli\((p)\)

(ii) Sample \(Y \) from \(N(\mu_i, \sigma_i^2) \)
(6) **Gibbs Sampler:**

- $p(X, Y)$ difficult, but $p(X \mid Y)$ and $p(Y \mid X)$ easy
- Initial values: $X = x^{(0)}, Y = y^{(0)}$.

 Iteratively for $i = 1, \ldots$, do

 (i) Sample $X = x^{(i+1)}$ from $p(X \mid Y = y^{(i)})$
 (ii) Sample $Y = y^{(i+1)}$ from $p(Y \mid X = x^{(i+1)})$

- After a burn-out period: $i = 0, \ldots, m$, the samples $(x^{(i)}, y^{(i)}), i = m + 1, \ldots$, are correlated samples from $p(X, Y)$.

Other more advanced Markov Chain Monte Carlo methods