11) \(f(y|\theta) = \begin{cases} \theta y^{\theta - 1}, & 0 < y < 1 \\ 0, & \text{otherwise} \end{cases} \)

Let \(X = -\log y \), then \(y = e^{-X} \).

\[
f_X(x) = \int_{e^{-x}} f_y(e^{-x}) e^{-x} \, dx
= \theta (e^{-x})^{\theta - 1} | e^{-x} |
= \theta e^{-\theta x}
\]

\(X \sim f_X(x) \sim \text{Gamma}(1, \theta) \).

\(T = -\sum \log y_i = -\sum X_i \sim \text{Gamma}(n, \theta) \).

(2) \[
\frac{f(t|\theta)}{f(t|\theta_1)} = \left(\frac{\theta_1}{\theta} \right)^n t^{n-1} e^{-t(\theta_1 - \theta)}
\]

Since \(\theta > \theta_1 \) and \(\theta_2 - \theta > 0 \), it's non-increasing likelihood ratio.

(3) \[
\log \left(\frac{L(\theta_2)}{L(\theta_1)} \right) = n \log \theta + (\theta_1 - \theta_1) \sum \log y_i
= n \log \theta + (\theta_1 - \theta) \sum \frac{1}{e} \log y_i
\]

\[
\frac{d \log L(\theta)}{d \theta} = \frac{n}{\theta} + \frac{1}{\theta} \sum \log y_i \geq 0
\]

\[
\theta_{M_2} = -\frac{n}{\sum \log y_i} = \frac{1}{\bar{y}} \quad \text{for} \quad 0 < y < 1
\]

\[
\frac{d \log L(\theta)}{d \theta} = -\frac{n \theta}{\sum \log y_i} \quad \text{so} \quad \theta_{M_2} = \frac{1}{\bar{y}} \text{ is maximum likelihood estimator}.
\]

(4) \(H_0: \theta = \theta_0 \) vs \(H_1: \theta \neq \theta_0 \)

\[
\chi^2 = \frac{\sum (\log y_i - \log \hat{\theta}_{M_2})^2}{\sum (\log y_i - \log \hat{\theta}_{M_2})^2}
\]

\[
\log \chi^2 = \log L(\theta_0|y) - \log L(\hat{\theta}_{M_2}|y)
= n \log \theta_0 - (\theta_0 - \hat{\theta}_{M_2}) \sum \log y_i
= n \log \theta_0 - (\theta_0 - \hat{\theta}_{M_2}) \sum \frac{1}{e} \log y_i
= n \log \frac{\theta_0}{\hat{\theta}_{M_2}} - \frac{n \theta_0}{\hat{\theta}_{M_2}} + n
= n \left(\log \frac{\theta_0}{\hat{\theta}_{M_2}} + \frac{n \theta_0}{\hat{\theta}_{M_2}} + 1 \right) \leq \log k
\]}
Let \(\phi(\frac{\theta_0}{\bar{\theta}}) = \log \frac{\theta_0}{\bar{\theta}} - \frac{\theta_0}{\bar{\theta}} + 1 \)

\(\phi(x) = \log x - x + 1 \)

\(\phi'(x) = \frac{1}{x} - 1 \)

Since \(\theta > 0 \) and \(\frac{\theta_0}{\bar{\theta}} > 0 \), \(x > 0 \).

\(\phi(x) = \frac{1}{x} - 1 \)

> 0 if \(x < 1 \)

< 0 if \(x > 1 \)

\(\phi(1) = 0 - 1 + 1 = 0 \)

\(\phi(x) \) is increasing when \(x < 1 \)

\(\phi(x) \) is decreasing when \(x > 1 \)

Rejection region \(\log \lambda(x) < \log \lambda \)

\(\phi(\frac{\theta_0}{\bar{\theta}}) < \frac{\log \lambda}{n} \)

Reject if \(\frac{\theta_0}{\bar{\theta}} < a \) or \(\frac{\theta_0}{\bar{\theta}} > b \)

That is \(\frac{\theta_0}{\bar{\theta}} < \hat{\theta} < \frac{\theta_0}{b} \)

where \(\phi(a) = \phi(b) = \frac{\log \lambda}{n} \)
For $\theta > \theta_0$,

$$\frac{f(T|\theta_1)}{f(T|\theta_0)} = \left(\frac{\theta_0}{\theta_1}\right)^{\theta_0-\theta_1} e^{-(\theta_1 T - \theta_0 T)} = \left(\frac{\theta_0}{\theta_1}\right)^{\theta_0-\theta_1} e^{-T(\theta_1-\theta_0)}$$

is a decreasing function of T.

Also, T is sufficient statistic.

Hence, it has MLE. By Koopman-Rubin,

the UMP for $H_0: \theta = \theta_0$ vs $H_1: \theta < \theta_0$ has rejection region of the form

$$\{T > t_0\}$$

where

$$\Gamma = \sup P(T > t_0 | \theta = \theta_0)$$

Since the pdf of T is statistically increasing,

$$\sup P(T > t_0 | \theta < \theta_0) = P(T > t_0 | \theta = \theta_0)$$

$$= P(2\theta_0 T > t_0 | \theta = \theta_0)$$

Since $T \sim \text{Gamma}(n, 1)$, hence under $\theta = \theta_0$, $2\theta_0 T \sim \text{Gamma}(n, 2)$, i.e. $2\theta_0 T \sim \chi^2(2n)$.

Hence $2\theta_0 T \sim \chi^2(2n)$ implies $t_0 = \frac{\chi^2_{2n}(\alpha)}{2\theta_0}$.

Thus, the UMP (one-tailed) test has rejection region $\{T > \frac{\chi^2_{2n}(\alpha)}{2\theta_0}\}$.
(b) \(T \sim \text{Gamma}(n, \frac{1}{\theta}) \), thus \(T \sim \text{Gamma}(n, 1) \) whose distribution does not depend on \(\theta \). Thus, \(T \) is a pivot.

The confidence interval takes the form \(\{ \theta : a \leq T \leq b \} \), and

\[
\int_a^b f_{\theta}(x)dx = 1 - \alpha. \quad \text{Note that Gamma}(n, 1) \) is unimodal. Thus, by setting \(f_{\theta}(a) = f_{\theta}(b) \), we can get the shortest interval.
\]

\[
\frac{a^{n-1}e^{-a}}{\Gamma(n)} = \frac{b^{n-1}e^{-b}}{\Gamma(n)} \implies -a + (n-1)\ln a = -b + (n-1)\ln b \quad \text{(1)}
\]

\[
\int_a^b \frac{x^{n-1}e^{-x}}{\Gamma(n)} dx = 1 - \alpha \quad \text{(2)}
\]

Solving \(1 \) & \(2 \) we can get \(a \) and \(b \), then the \((1 - \alpha) \) CI is

\[
C(T) = \{ \theta : \frac{a}{1} \leq \theta \leq \frac{b}{1} \}.
\]
2) \[L(\theta|y) = \frac{2^n}{\theta^n} \prod_{i=1}^{n} I(y_i \leq \theta) I(y_n > \theta) \]

We can see \(L(\theta|y) \) decreases as \(\theta \) increases. Thus, the maximum of \(L(\theta|y) \) is achieved by the smallest value of \(\theta \). Hence \(\hat{\theta} = y(n) \).

2) \[
\hat{\theta}_0 = \begin{cases} \theta_0 & y(n) \leq \theta_0 \\
\hat{\theta} = y(n) & y(n) > \theta_0 \end{cases}
\]

Hence, \(\Delta(y) = \frac{L(\hat{\theta}|y)}{L(\theta_0|y)} = \left(\frac{y(n)}{\theta_0} \right)^{-n} \) if \(y(n) \leq \theta_0 \).

Thus, the LRT has rejection region \[\{ y|y : \left(\frac{y(n)}{\theta_0} \right)^{-n} < c \text{ and } y(n) \leq \theta_0 \} \]

3) First find the density of \(y(n) \)

\[P(y(n) \leq y) = \left[P(X \leq y) \right]^n = \left[\int_{-\infty}^{y} \frac{2}{\theta^2} \exp\left(-\frac{t}{\theta}\right) \, dt \right]^n = \left(\frac{y}{\theta} \right)^n \quad \text{for } y \leq \theta. \]

\[f_{y(n)}(y) = \frac{2ny^{2n-1}}{\theta^{2n}} \quad \text{for } 0 \leq y \leq \theta. \]

Let \(\theta_1 > \theta_2 \):

\[\frac{f_{y(n)}(y|\theta_1)}{f_{y(n)}(y|\theta_2)} = \frac{\theta_2^{2n} 1(y \leq \theta_1)}{\theta_1^{2n} 1(y \leq \theta_2)} = \begin{cases} \left(\frac{\theta_2}{\theta_1} \right)^{-n} & y < \theta_2 < \theta_1 \\
\infty & \theta_2 < y < \theta_1 \\
\text{not defined} & y > \theta_1 \end{cases} \]

Thus, it has MLE. Also, \(y(n) \) is sufficient statistic.

The rejection region has the form \[\{ y(n) < t \} \]
\[a = \sup_{\theta \geq \theta_0} P_\theta(Y_n < t) = \sup_{\theta \geq \theta_0} \int_0^t \frac{2n \gamma^{2n-1}}{\theta^{2n}} \, dy = \sup_{\theta \geq \theta_0} \left[-\left(\frac{t}{\theta}\right)^n \right] = \left(\frac{t}{\theta_0}\right)^n \]

Thus, \[t = a^{1/n} \theta_0 \]

The UMP test has rejection region \(\{ Y_n < a^{1/n} \theta_0 \} \)

(4) The acceptance region of (3) is \(A(\theta_0) = \{ Y_n > a^{1/n} \theta_0 \} \). Note that \(P_{\theta_0}(Y_n > \theta_0) = 0 \).

Thus, the acceptance region is equivalent to \(A(\theta_0) = \{ a^{1/n} \theta_0 < Y_n < \theta_0 \} \).

Thus, the confidence interval is \(C(Y_n) = \{ Y_n \leq \theta_0 \leq Y(n) a^{1/n} \} \).

(5) We have shown \(f(Y_n; \theta) \) has MLE. Thus, the rejection region for this test takes the form: \(\{ Y_n > t \} \), and

\[a = \sup_{\theta \geq \theta_0} P_\theta(Y_n > t) = \sup_{\theta \geq \theta_0} \int_0^t \frac{2n \gamma^{2n-1}}{\theta^{2n}} \, dy = \sup_{\theta \geq \theta_0} \left[1 - \left(\frac{t}{\theta}\right)^n \right] = 1 - \left(\frac{t}{\theta_0}\right)^n \]

Thus, \[t = (1-a)^{1/n} \theta_0 \]

Hence, the rejection region for UMP level \(a \) test is \(\{ Y_n : Y_n > (1-a)^{1/n} \theta_0 \} \).
Claim: the UMP level \(\alpha \) test for \(H_0: \theta = \theta_0 \) vs. \(H_1: \theta = \theta_1 \) has the rejection region \(R = \{ Y_{1n}: Y_{1n} < \alpha^{1/n} \theta_0 \text{ or } Y_{1n} > \theta_0 \} \). Denote its power function by \(p^*(\theta) \).

For \(\theta_1 < \theta_0 \). We have shown the UMP test of \(H_0: \theta = \theta_0 \) vs. \(H_1: \theta = \theta_1 \) should have a rejection region \(R = \{ Y_{1n}: Y_{1n} < \alpha^{1/n} \theta_0 \} \).

The power of the test at \(\theta_1 \) is \(\beta(\theta_1) = P \left(Y_{1n} < \alpha^{1/n} \theta_0 \mid \theta = \theta_1 \right) \).

And \(p^*(\theta_1) = P \left(Y_{1n} < \alpha^{1/n} \theta_0 \text{ or } Y_{1n} > \theta_0 \mid \theta = \theta_1 \right) = 0 \) since \(P \left(Y_{1n} > \theta_0 \mid \theta = \theta_1 \right) = 0 \).

Hence, \(p^*(\theta_1) = P \left(Y_{1n} < \alpha^{1/n} \theta_0 \right) = \beta(\theta_1) \).

For \(\theta_1 > \theta_0 \). We have shown the UMP test of \(H_0: \theta = \theta_0 \) vs. \(H_1: \theta = \theta_1 \) should have a rejection region \(R = \{ Y_{1n}: Y_{1n} > (1-\alpha)^{1/n} \theta_0 \} \).

The power at \(\theta_1 \) is \(\beta(\theta_1) = P \left(Y_{1n} > (1-\alpha)^{1/n} \theta_0 \mid \theta = \theta_1 \right) = \int_{(1-\alpha)^{1/n} \theta_0}^{\infty} f_{Y_{1n}}(y) \, dy

= 1 - (1-\alpha) \left(\frac{\theta_0}{\theta_1} \right)^{2n} \).

And \(p^*(\theta_1) = P \left(Y_{1n} > \theta_0 \text{ or } Y_{1n} < \alpha^{1/n} \theta_0 \mid \theta = \theta_1 \right) = \int_0^{\alpha^{1/n} \theta_0} f_{Y_{1n}}(y) \, dy + \int_{(1-\alpha)^{1/n} \theta_0}^{\infty} f_{Y_{1n}}(y) \, dy = \alpha \cdot \left(\frac{\theta_0}{\theta} \right)^{2n} + 1 - \left(\frac{\theta_0}{\theta} \right)^{2n} = 1 - (1-\alpha) \left(\frac{\theta_0}{\theta} \right)^{2n} = p^*(\theta_1) \).

Hence, the test with rejection region \(R \) has the same power as the UMP level \(\alpha \) test for \(\theta_1 \). Thus, by the optimality of Neyman-Pearson lemma, the test with rejection region \(R \) is UMP level \(\alpha \) test for \(H_0: \theta = \theta_0 \) vs. \(H_1: \theta = \theta_1 \).
Consider

\[H_0 : \theta = \theta_0 \quad \text{vs.} \quad H_1 : \theta = \theta_1 \ (\theta_0 < \theta_1) \]

Then

| \(x(n) \leq \theta_1 \) | \(f(x | \theta_0) \) | \(f(x | \theta_1) \) |
|------------------------|----------------|----------------|
| \(0 < x(n) \leq \theta_0 \) | \(\left(\frac{2}{\theta_0^n} \right) x_1 \cdots x_n \) | \(\left(\frac{2}{\theta_1^n} \right) x_1 \cdots x_n \) |
| \(x(n) > \theta_0 \) | \(0 \) | \(0 \) |

Note that the rejection region \(R^* = \{ x(n) \leq \frac{1}{n} \theta_0 \} \) has size \(\alpha \).

Case I: If \(x(n) \leq \theta_0 \), then \(R^* \) satisfies

\[
\text{if } f(x | \theta_1) > k f(x | \theta_0) \quad \text{then } x \in R^* \]

\[
\text{if } f(x | \theta_1) < k f(x | \theta_0) \quad \text{then } x \in R' \]

with the choice \(k = 0 \). The above condition simply says

\[
\text{if } x(n) \leq \theta_0 \quad \text{then } x \in R^* \]

By necessity of Neyman Lemma, any UMP level \(\alpha \) test must satisfy \(\text{if } x \in R \) or equivalently \(\text{if } x \in R' \). Therefore, a UMP level \(\alpha \) rejection region \(R \) must be of the form

\[
R = \{ x(n) \leq \theta_1 \} \cup A \quad \text{such that } P_{\theta_0}(R) \leq \alpha.
\]

for an arbitrary set \(A \).
It is easy to see that all such UMP level \(\alpha \) tests have

\[\text{power} = 1, \text{ i.e. } P_{0_1}(R) = 1. \]

\textbf{Case II:}

If \(x_2 = 0_2 < 0_1 \), then \(R^* \) satisfies \(\bigcirc \)

with the choice \(k = \left(\frac{0_2}{0_1} \right)^{2\alpha} \). The condition \(\bigcirc \) simply requires

\[\text{if } x_n > 0_1 \text{ then } x \in R^*. \]

By necessity of NP lemma, any UMP level \(\alpha \) test must

\[\text{satisfy } \bigcirc \text{ with } k = \left(\frac{0_2}{0_1} \right)^{2\alpha} \text{ or equivalently } \bigcirc \bigcirc. \]

Therefore, a UMP level \(\alpha \) rejection region \(R \) must be of the form

\[R = \left\{ x_n \leq 0_1 \right\} \cap A \]

for an arbitrary set \(A \) such that \(P_{0_2}(R) = \alpha. \)

The power of such UMP level \(\alpha \) tests is

\[P_{0_1}(R) = \int_{R} \left(\frac{z}{\theta_1} \right)^{n} x_1 - x_n \, dx_1 - dx_n \]

\[= \left(\frac{0_2}{0_1} \right)^{2\alpha} \int_{R} \left(\frac{z}{\theta_0} \right)^{n} x_1 - x_n \, dx_1 - dx_n \]

\[= \left(\frac{0_2}{0_1} \right)^{2\alpha} \, \alpha. \]