6.6 The joint pdf is given by
\[f(x_1, \ldots, x_n|\alpha, \beta) = \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)\beta^\alpha} x_i^{\alpha-1} e^{-x_i/\beta} = \left(\frac{1}{\Gamma(\alpha)\beta^\alpha} \right)^n \left(\prod_{i=1}^{n} x_i \right)^{\alpha-1} e^{-\Sigma x_i/\beta}. \]

By the Factorization Theorem, \(\prod_{i=1}^{n} X_i \) is sufficient for \((\alpha, \beta)\).

6.7 Let \(x_{(1)} = \min\{x_1, \ldots, x_n\}, \quad x_{(n)} = \max\{x_1, \ldots, x_n\} \), \(y_{(1)} = \min\{y_1, \ldots, y_n\} \) and \(y_{(n)} = \max\{y_1, \ldots, y_n\} \). Then the joint pdf is
\[
\begin{align*}
 f(x|y|\theta) & = \prod_{i=1}^{n} \frac{1}{(\theta_3 - \theta_1)(\theta_4 - \theta_2)} \mathcal{I}(\theta_1, \theta_3)(x_i) \mathcal{I}(\theta_2, \theta_4)(y_i) \\
 & = \left(\frac{1}{(\theta_3 - \theta_1)(\theta_4 - \theta_2)} \right)^n \mathcal{I}(\theta_1, \infty)(x_{(1)}) \mathcal{I}(\infty, \theta_3)(x_{(n)}) \mathcal{I}(\theta_2, \infty)(y_{(1)}) \mathcal{I}(\infty, \theta_4)(y_{(n)}) \cdot \frac{1}{\eta(x)}.
\end{align*}
\]

By the Factorization Theorem, \((X_{(1)}, X_{(n)}, Y_{(1)}, Y_{(n)}) \) is sufficient for \((\theta_1, \theta_2, \theta_3, \theta_4)\).

6.9 Use Theorem 6.2.13.

a. \[
\frac{f(x|\theta)}{f(y|\theta)} = \frac{(2\pi)^{-n/2} e^{-\Sigma x_i - \Sigma y_i}/2}{(2\pi)^{-n/2} e^{-\Sigma y_i - y_i^2}/2} = \exp \left\{ -\frac{1}{2} \left(\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} y_i^2 + 2\theta n(y - \bar{x}) \right) \right\}.
\]

This is constant as a function of \(\theta\) if and only if \(\bar{y} = \bar{x}\); therefore \(X\) is a minimal sufficient statistic for \(\theta\).

b. Note, for \(X \sim \text{location exponential}(\theta)\), the range depends on the parameter. Now
\[
\begin{align*}
 f(x|\theta) & = \prod_{i=1}^{n} \left(e^{-(x_i - \theta)} \mathcal{I}(\theta, \infty)(x_i) \right) \\
 f(y|\theta) & = \prod_{i=1}^{n} \left(e^{-(y_i - \theta)} \mathcal{I}(\theta, \infty)(y_i) \right) \\
 & = e^{n\theta} e^{-\Sigma x_i} \prod_{i=1}^{n} \mathcal{I}(\theta, \infty)(x_i) e^{n\theta} e^{-\Sigma y_i} \prod_{i=1}^{n} \mathcal{I}(\theta, \infty)(y_i) \\
 & = e^{-\Sigma x_i} \mathcal{I}(\theta, \infty)(\min x_i) e^{-\Sigma y_i} \mathcal{I}(\theta, \infty)(\min y_i).
\end{align*}
\]

To make the ratio independent of \(\theta\) we need the ratio of indicator functions independent of \(\theta\). This will be the case if and only if \(\min\{x_1, \ldots, x_n\} = \min\{y_1, \ldots, y_n\}\). So \(T(X) = \min\{X_1, \ldots, X_n\}\) is a minimal sufficient statistic.

c. \[
\begin{align*}
 \frac{f(x|\theta)}{f(y|\theta)} & = \frac{e^{-\Sigma (x_i - \theta)}}{\prod_{i=1}^{n} \left(1 + e^{-(x_i - \theta)} \right)^2} \frac{\prod_{i=1}^{n} \left(1 + e^{-(y_i - \theta)} \right)^2}{e^{-\Sigma (y_i - \theta)}} \\
 & = e^{-\Sigma (y_i - x_i)} \left(\frac{\prod_{i=1}^{n} \left(1 + e^{-(y_i - \theta)} \right)}{\prod_{i=1}^{n} \left(1 + e^{-(x_i - \theta)} \right)} \right)^2.
\end{align*}
\]

This is constant as a function of \(\theta\) if and only if \(x\) and \(y\) have the same order statistics. Therefore, the order statistics are minimal sufficient for \(\theta\).

d. This is a difficult problem. The order statistics are a minimal sufficient statistic.
e. Fix sample points x and y. Define $A(\theta) = \{i : x_i \leq \theta\}$, $B(\theta) = \{i : y_i \leq \theta\}$, $a(\theta) =$ the number of elements in $A(\theta)$ and $b(\theta) =$ the number of elements in $B(\theta)$. Then the function $f(x|\theta)/f(y|\theta)$ depends on θ only through the function

$$\sum_{i=1}^{n} |x_i - \theta| - \sum_{i=1}^{n} |y_i - \theta| = \sum_{i \in A(\theta)} (\theta - x_i) + \sum_{i \in A(\theta)} (x_i - \theta) - \sum_{i \in B(\theta)} (\theta - y_i) - \sum_{i \in B(\theta)} (y_i - \theta) = (a(\theta) - [n - a(\theta)]) - b(\theta) + [n - b(\theta)]\theta + \left(- \sum_{i \in A(\theta)} x_i + \sum_{i \in A(\theta)} x_i + \sum_{i \in B(\theta)} y_i - \sum_{i \in B(\theta)} y_i \right).$$

Consider an interval of θs that does not contain any x_i or y_i. The second term is constant on such an interval. The first term will be constant on the interval if and only if $a(\theta) = b(\theta)$. This will be true for all such intervals if and only if the order statistics for x are the same as the order statistics for y. Therefore, the order statistics are a minimal sufficient statistic.

6.10 To prove $T(X) = (X(1), X(n))$ is not complete, we want to find $g(T(X))$ such that $E[g(T(X))] = 0$ for all θ, but $g(T(X)) \neq 0$. A natural candidate is $R = X(n) - X(1)$, the range of X, because by Example 6.2.17 its distribution does not depend on θ. From Example 6.2.17, R ~ beta($n-1, 2$). Thus $E(R) (n-1)/(n+1)$ does not depend on θ, and $E(R - E(R)) = 0$ for all θ. Thus $g(X(n), X(1)) = X(n) - X(1) - (n-1)/(n+1) = R - E(R)$ is a nonzero function whose expected value is always 0. So, $(X(1), X(n))$ is not complete. This problem can be generalized to show that if a function of a sufficient statistic is ancillary, then the sufficient statistic is not complete, because the expected value of that function does not depend on θ. That provides the opportunity to construct an unbiased, nonzero estimator of zero.

6.11 a. These are all location families. Let $Z(1), \ldots, Z(n)$ be the order statistics from a random sample of size n from the standard pdf $f(x|\theta)$. Then $(Z(1) + \theta, \ldots, Z(n) + \theta)$ has the same joint distribution as $(X(1), \ldots, X(n))$, and $(Y(1), \ldots, Y(n-1))$ has the same joint distribution as $(Z(n) + \theta - (Z(1) + \theta), \ldots, Z(n) + \theta - (Z(n-1) + \theta)) = (Z(n) - Z(1), \ldots, Z(n) - Z(n-1))$. The last vector depends only on (Z_1, \ldots, Z_n) whose distribution does not depend on θ. So, $(Y(1), \ldots, Y(n-1))$ is ancillary.

b. For a), Basu’s lemma shows that (Y_1, \ldots, Y_{n-1}) is independent of the complete sufficient statistic. For c), d), and e) the order statistics are sufficient, so (Y_1, \ldots, Y_{n-1}) is independent of the sufficient statistic. For b), $X(1)$ is sufficient. Define $Y_n = X(1)$. Then the joint pdf of (Y_1, \ldots, Y_n) is

$$f(y_1, \ldots, y_n) = n!e^{-n(y_1 - \theta)} - (n-1)\theta \prod_{i=2}^{n-1} e^{\theta}, \quad 0 < y_{n-1} < y_n < \cdots < y_1 \quad 0 < y_n < \infty.$$

Thus, $Y_n = X(1)$ is independent of (Y_1, \ldots, Y_{n-1}).

6.12 a. Use Theorem 6.2.13 and write

$$\frac{f(x, n|\theta)}{f(y, n'|\theta)} = \frac{f(x|\theta, N = n)P(N = n)}{f(y|\theta, N = n')P(N = n')} = \frac{\binom{n}{x} \theta^x (1-\theta)^{n-x} n! p_n}{\binom{n'}{y} \theta^y (1-\theta)^{n'-y} n'! p_{n'}} = \theta^{x-y} (1-\theta)^{n-x+y} \left(\frac{n!}{y!} \right) \frac{p_n}{p_{n'}}.$$
The last ratio does not depend on \(\theta \). The other terms are constant as a function of \(\theta \) if and only if \(n = n' \) and \(x = y \). So \((X, N)\) is minimal sufficient for \(\theta \). Because \(P(N = n) = p_n \) does not depend on \(\theta \), \(N \) is ancillary for \(\theta \). The point is that although \(N \) is independent of \(\theta \), the minimal sufficient statistic contains \(N \) in this case. A minimal sufficient statistic may contain an ancillary statistic.

\[
\begin{align*}
\mathbb{E}(X / N) &= \mathbb{E}\left(\mathbb{E}(X / N) \mid N \right) = \mathbb{E}\left(\frac{1}{N} \mathbb{E}(X / N) \mid N \right) = \mathbb{E}\left(\frac{1}{N} N \theta \right) = \mathbb{E}(\theta) = \theta. \\
\text{Var}(X / N) &= \text{Var}\left(\mathbb{E}(X / N) \right) + \mathbb{E}\left(\text{Var}(X / N) \right) = \text{Var}(\theta) + \mathbb{E}\left(\frac{1}{N^2} \text{Var}(X / N) \right)
\end{align*}
\]

\[
= 0 + \mathbb{E}\left(\frac{N \theta (1 - \theta)}{N^2} \right) = \theta (1 - \theta) \mathbb{E}\left(\frac{1}{N} \right).
\]

We used the fact that \(X \mid N \sim \text{binomial}(N, \theta) \).

6.13 Let \(Y_1 = \log X_1 \) and \(Y_2 = \log X_2 \). Then \(Y_1 \) and \(Y_2 \) are iid and, by Theorem 2.1.5, the pdf of each is

\[
f(y|\alpha) = \alpha \exp\left\{ ay - e^{ay} \right\} = \frac{1}{a} \exp\left\{ \frac{y}{a} - e^{y/(1/a)} \right\}, \quad -\infty < y < \infty.
\]

We see that the family of distributions of \(Y_1 \) is a scale family with scale parameter \(1/\alpha \). Thus, by Theorem 3.5.6, we can write \(Y_1 = \frac{1}{\alpha} Z_1 \), where \(Z_1 \) and \(Z_2 \) are a random sample from \(f(z) \mid 1 \). Then

\[
\frac{Y_1}{Y_2} = \frac{Z_1}{Z_2},
\]

because the distribution of \(Z_1 / Z_2 \) does not depend on \(\alpha \), \((\log X_1) / (\log X_2) \) is an ancillary statistic.

6.14 Because \(X_1, \ldots, X_n \) is from a location family, by Theorem 3.5.6, we can write \(X_i = Z_i + \mu \), where \(Z_1, \ldots, Z_n \) is a random sample from the standard pdf, \(f(x) \), and \(\mu \) is the location parameter. Let \(M(X) \) denote the median calculated from \(X_1, \ldots, X_n \). Then \(M(X) = M(Z) + \mu \) and \(\bar{X} = \bar{Z} + \mu \). Thus, \(M(X) - \bar{X} = (M(Z) + \mu) - (\bar{Z} + \mu) = M(Z) - \bar{Z} \). Because \(M(X) - \bar{X} \) is a function of only \(Z_1, \ldots, Z_n \), the distribution of \(M(X) - \bar{X} \) does not depend on \(\mu \); that is, \(M(X) - \bar{X} \) is an ancillary statistic.

6.15 a. The parameter space consists only of the points \((\theta, \nu)\) on the graph of the function \(\nu = a \theta^2 \).

This quadratic graph is a line and does not contain a two-dimensional open set.

b. Use the same factorization as in Example 6.2.9 to show \((\bar{X}, S^2)\) is sufficient. \(E(S^2) = a \theta^2 \) and \(E(\bar{X}^2) = \text{Var} \bar{X} + E(\bar{X})^2 = a \theta^2 / n + \theta^2 = (a + n) \theta^2 / n \). Therefore,

\[
E\left(\frac{n}{a + n} \bar{X} - \frac{S^2}{n} \right) = \left(\frac{n}{a + n} \right) \left(\frac{a + n \theta^2}{n} - \frac{1}{a} a \theta^2 \right) = 0,
\]

for all \(\theta \).

Thus \(g(\bar{X}, S^2) = \frac{n}{a + n} \bar{X} - \frac{S^2}{a} \) has zero expectation so \((\bar{X}, S^2)\) not complete.

6.17 The population pmf is \(f(x|\theta) = \theta (1 - \theta) x^{-1} = \frac{\theta}{1 - \theta} \log(1 - \theta)x \), an exponential family with \(t(x) = x \). Thus, \(\sum_i X_i \) is a complete, sufficient statistic by Theorems 6.2.10 and 6.2.25. \(\sum_i X_i - n \sim \text{negative binomial}(n, \theta) \).

6.18 The distribution of \(Y = \sum_i X_i \) is Poisson\((n \lambda)\). Now

\[
E g(Y) = \sum_{y=0}^{\infty} g(y) \frac{(n \lambda)^y e^{-n \lambda}}{y!}.
\]

If the expectation exists, this is an analytic function which cannot be identically zero.
6.19 To check if the family of distributions of X is complete, we check if $E_p g(X) = 0$ for all p, implies that $g(X) \equiv 0$. For Distribution 1,

$$E_p g(X) = \sum_{x=0}^{2} g(x) P(X = x) = pg(0) + 3pg(1) + (1 - 4p)g(2).$$

Note that if $g(0) = -3g(1)$ and $g(2) = 0$, then the expectation is zero for all p, but $g(x)$ need not be identically zero. Hence the family is not complete. For Distribution 2 calculate

$$E_p g(X) = g(0)p + (1)p^2 + g(2)(1 - p - p^2) = [g(1) - g(2)]p + g(0) - g(2)p + g(2).$$

This is a polynomial of degree 2 in p. To make it zero for all p each coefficient must be zero. Thus, $g(0) = g(1) = g(2) = 0$, so the family of distributions is complete.

6.20 The pdfs in b), c), and e) are exponential families, so they have complete sufficient statistics from Theorem 6.2.25. For a), $Y = \max\{X_i\}$ is sufficient and

$$f(y) = \frac{2^n}{\theta^{2n}} y^{2n-1}, \quad 0 < y < \theta.$$

For a function $g(y)$,

$$E g(Y) = \int_0^\theta g(y) \frac{2^n}{\theta^{2n}} y^{2n-1} dy = 0 \quad \text{for all } \theta \Rightarrow g(0) = 0 \quad \text{for all } \theta$$

by taking derivatives. This can only be zero if $g(\theta) = 0$ for all θ, so $Y = \max\{X_i\}$ is complete. For d), the order statistics are minimal sufficient. This is a location family. Thus, by Example 6.2.18 the range $R = X_{(n)} - X_{(1)}$ is ancillary, and its expectation does not depend on θ. So this sufficient statistic is not complete.

6.21 a. X is sufficient because it is the data. To check completeness, calculate

$$E g(X) = \frac{\theta}{2} g(-1) + (1 - \theta) g(0) + \frac{\theta}{2} g(1).$$

If $g(-1) = g(1)$ and $g(0) = 0$, then $E g(X) = 0$ for all θ, but $g(x)$ need not be identically 0. So the family is not complete.

b. $|X|$ is sufficient by Theorem 6.2.6, because $f(x|\theta)$ depends on x only through the value of $|x|$. The distribution of $|X|$ is Bernoulli, because $P(|X| = 0) = 1 - \theta$ and $P(|X| = 1) = \theta$. By Example 6.2.22, a binomial family (Bernoulli is a special case) is complete.

c. Yes, $f(x|\theta) = (1 - \theta)(\theta/(2(1 - \theta)))^{|x|} = (1 - \theta) e^{x \log(\theta/2(1 - \theta))}$, the form of an exponential family.

6.22 a. The sample density is $\prod_i \theta |x_i|^{\theta-1} = \theta^n (\prod_i |x_i|)^{\theta-1}$, so $\prod_i X_i$ is sufficient for θ, not $\sum_i X_i$.

b. Because $\prod_i f(x_i|\theta) = \theta^{n \log(\theta^{-1})} (\prod_i x_i)^{\theta-1}$, $\log(\prod_i X_i)$ is complete and sufficient by Theorem 6.2.25. Because $\prod_i X_i$ is a one-to-one function of $\log(\prod_i X_i)$, $\prod_i X_i$ is also a complete sufficient statistic.

6.23 Use Theorem 6.2.13. The ratio

$$f(x|\theta) = \frac{e^{-n} I_{x(1)/2,x(1)}}{e^{-n} I_{y(1)/2,y(1)}}(\theta)$$

is constant (in fact, one) if and only if $x(1) = y(1)$ and $x(n) = y(n)$. So $(X(1), X(n))$ is a minimal sufficient statistic for θ. From Exercise 6.10, we know that if a function of the sufficient statistics is ancillary, then the sufficient statistic is not complete. The uniform $(\theta, 2\theta)$ family is a scale family, with standard pdf $f(x) \sim \text{uniform}(1, 2)$. So if Z_1, \ldots, Z_n is a random sample
6.29 Let \(f_j = \logistic(\alpha_j, \beta_j), \ j = 0, 1, \ldots, k. \) From Theorem 6.6.5, the statistic
\[
T(x) = \left(\prod_{i=1}^{n} f_1(x_i), \ldots, \prod_{i=1}^{n} f_k(x_i) \right) = \left(\prod_{i=1}^{n} f_1(x_i) \prod_{i=1}^{n} f_k(x_i) \right)
\]
is minimal sufficient for the family \(\{f_0, f_1, \ldots, f_k\}. \) As \(T \) is a \(1 \times 1 \) function of the order statistics, the order statistics are also minimal sufficient for the family \(\{f_0, f_1, \ldots, f_k\}. \) If \(\mathcal{F} \) is a nonparametric family, \(f_j \in \mathcal{F}, \) so part (b) of Theorem 6.6.5 can now be directly applied to show that the order statistics are minimal sufficient for \(\mathcal{F}. \)

6.30 a. From Exercise 6.9b, we have that \(X_{(1)} \) is a minimal sufficient statistic. To check completeness compute \(f_{X_1}(y), \) where \(Y_1 = X_{(1)}. \) From Theorem 5.4.4 we have
\[
f_{X_1}(y) = f_X(y)(1 - F_X(y))^{n-1} = e^{-(y-\mu)} \left[e^{-(y-\mu)} \right]^{n-1} = ne^{-(y-\mu)}, \quad y > \mu.
\]
Now, write \(E_{\mu} f(Y_1) = \int_{\mu}^{\infty} g(y)e^{-ny} dy. \) If this is zero for all \(\mu, \) then \(\int_{\mu}^{\infty} g(y)e^{-ny} dy = 0 \) for all \(\mu \) (because \(ne^{-\mu} > 0 \) for all \(\mu \) and does not depend on \(y \)). Moreover,
\[
0 = \frac{d}{d\mu} \int_{\mu}^{\infty} g(y)e^{-ny} dy = -g(\mu)e^{-\mu}
\]
for all \(\mu. \) This implies \(g(\mu) = 0 \) for all \(\mu, \) so \(X_{(1)} \) is complete.

b. Basu’s Theorem says that if \(X_{(1)} \) is a complete sufficient statistic for \(\mu, \) then \(X_{(1)} \) is independent of any ancillary statistic. Therefore, we need to show only that \(S^2 \) has distribution independent of \(\mu; \) that is, \(S^2 \) is ancillary. Recognize that \(f(x | \mu) \) is a location family. So we can write \(X_1 = Z_1 + \mu, \) where \(Z_1, \ldots, Z_n \) is a random sample from \(f(x | 0). \) Then
\[
S^2 = \frac{1}{n-1} \sum (X_i - \bar{X})^2 = \frac{1}{n-1} \sum ((Z_i + \mu) - (\bar{Z} + \mu))^2 = \frac{1}{n-1} \sum (Z_i - \bar{Z})^2.
\]
Because \(S^2 \) is a function of only \(Z_1, \ldots, Z_n, \) the distribution of \(S^2 \) does not depend on \(\mu; \) that is, \(S^2 \) is ancillary. By Basu’s theorem, \(S^2 \) is independent of \(X_{(1)}). \)

6.31 a. (i) By Exercise 3.28 this is a one-dimensional exponential family with \(t(x) = x. \) By Theorem 6.2.25, \(\sum X_i \) is a complete sufficient statistic. \(\bar{X} \) is a one-to-one function of \(\sum X_i, \) so \(\bar{X} \) is also a complete sufficient statistic. From Theorem 5.3.1 we know that \((n-1)S^2/\sigma^2 \sim \chi^2_{n-1} = \gamma((n-1)/2, 2). \) \(S^2 = [\sigma^2/(n-1)](n-1)S^2/\sigma^2, \) a simple scale transformation, has a gamma \((n-1)/2, 2\sigma^2/(n-1)\) distribution, which does not depend on \(\mu; \) that is, \(S^2 \) is ancillary. By Basu’s Theorem, \(\bar{X} \) and \(S^2 \) are independent.

(ii) The independence of \(\bar{X} \) and \(S^2 \) is determined by the joint distribution of \((\bar{X}, S^2) \) for each value of \((\mu, \sigma^2). \) By part (i), for each value of \((\mu, \sigma^2), \) \(\bar{X} \) and \(S^2 \) are independent.

b. (i) \(\mu \) is a location parameter. By Exercise 6.14, \(M - \bar{X} \) is ancillary. As in part (a) \(\bar{X} \) is a complete sufficient statistic. By Basu’s Theorem, \(\bar{X} \) and \(M - \bar{X} \) are independent. Because they are independent, by Theorem 4.5.6 \(\text{Var} M = \text{Var}(M - \bar{X} + \bar{X}) = \text{Var}(M - \bar{X}) + \text{Var} \bar{X}. \)

(ii) If \(S^2 \) is a sample variance calculated from a normal sample of size \(N, (N-1)S^2/\sigma^2 \sim \chi^2_{N-1}. \) Hence, \((N-1)\text{Var} S^2/(\sigma^2)^2 = 2(N-1) \) and \(\text{Var} S^2 = 2(\sigma^2)^2/(N-1). \) Both \(M \) and \(M - \bar{X} \) are asymptotically normal, so, \(M_1, \ldots, M_N \) and \(M_1 - \bar{X}_1, \ldots, M_N - \bar{X}_N \) are each approximately normal samples if \(n \) is reasonable large. Thus, using the above expression we get the two given expressions where in the straightforward case \(\sigma^2 \) refers to \(\text{Var} M, \) and in the swindle case \(\sigma^2 \) refers to \(\text{Var}(M - \bar{X}). \)

c. (i)
\[
E(X^k) = E\left(\frac{X}{\bar{X}} \right)^k = E\left(\frac{X}{\bar{X}} \right)^k \text{(by indep.)} = E\left(\frac{X}{\bar{X}} \right)^k E(Y^k).
\]
Divide both sides by \(E(Y^k) \) to obtain the desired equality.
(ii) If α is fixed, $T = \sum X_i$ is a complete sufficient statistic for β by Theorem 6.2.25. Because β is a scale parameter, if Z_1, \ldots, Z_n are a random sample from a gamma$(\alpha, 1)$ distribution, then $X_i/\sum Z_i$ has the same distribution as $(\beta Z_i)/(\beta \sum Z_i) = Z_i/(\sum Z_i)$, and this distribution does not depend on β. Thus, $X_i/\sum Z_i$ is ancillary, and by Basu’s Theorem, it is independent of T. We have

$$E(X_i/\sum Z_i | T) = E\left(\frac{X_i}{T} \left| \frac{T}{\sum Z_i} \right. \right) = \frac{E(X_i)}{E(T)} = \frac{T E(X_i)}{E(T)}.$$

Note, this expression is correct for each fixed value of (α, β), regardless whether α is “known” or not.

6.32 In the Formal Likelihood Principle, take $E_1 = E_2 = E$. Then the conclusion is $E\{E(X_1) = E\{E(X_2) = c \}$. Thus evidence is equal whenever the likelihood functions are equal, and this follows from Formal Sufficiency and Conditionality.

6.33 a. For all sample points except $(2, x_2^2)$ (but including $(1, x_1^1)$), $T(j, x_j) = (j, x_j)$. Hence,

$$g(T(j, x_j)|\theta) h(j, x_j) = g((j, x_j)|\theta) 1 = f^*(j, x_j)|\theta)$$

For $(2, x_2^2)$ we also have

$$g(T(2, x_2^2)|\theta) h(2, x_2^2) = g((1, x_1^1)|\theta) C = f^*((1, x_1^1)|\theta) C = \frac{1}{2} f_1(x_1^1)|\theta)$$

$$= \frac{1}{2} \frac{1}{2} L(\theta|x_1^1) = \frac{1}{2} f_2(x_2^2|x_1^1) = f^*((2, x_2^2)|\theta).$$

By the Factorization Theorem, $T(J, X_J)$ is sufficient.

b. Equations 6.3.4 and 6.3.5 follow immediately from the two Principles. Combining them we have $E\{E_1(x_1^1) = E\{E_2(x_2^1) = E\{x_1^1 = E\{x_2^1\}$, the conclusion of the Formal Likelihood Principle.

c. To prove the Conditionality Principle. Let one experiment be the E^* experiment and the other E_j. Then

$$L(\theta|x_1, x_j) = f^*(j, x_j|\theta) = \frac{1}{2} f_j(x_j|\theta) = \frac{1}{2} L(\theta|x_j).$$

Letting (j, x_j) and x_j play the roles of x_1^1 and x_2^2 in the Formal Likelihood Principle we can conclude $E\{E^*(j, x_j) = E\{E_1(x_1^1) = E\{x_1^1 = E\{x_2^1\}$, the Conditionality Principle. Now consider the Formal Sufficiency Principle. If $T(X)$ is sufficient and $T(x) = T(y)$, then $L(\theta|x) = C L(\theta|y)$, where $C = h(x)/h(y)$ and h is the function from the Factorization Theorem. Hence, by the Formal Likelihood Principle, $E\{E_1(x_1^1) = E\{E_2(x_2^2) = E\{x_1^1 = E\{x_2^2\}$, the Formal Sufficiency Principle.

6.35 Let $i = \text{success}$ and $0 = \text{failure}$. The four sample points are $\{0, 0, 1, 1, 11, 11\}$. From the likelihood principle, inference about p is only through $L(p|x)$. The values of the likelihood are $1, p, p^2$, and p^3, and the sample size does not directly influence the inference.

6.37 a. For one Observation (X, Y) we have

$$I(\theta) = -E \left(\frac{\partial^2}{\partial \theta^2} \log f(X, Y|\theta) \right) = -E \left(\frac{-2Y}{\theta^2} \right) = \frac{2EY}{\theta^2}.$$

But, $Y \sim \text{exponential}(\theta)$, and $EY = \theta$. Hence, $I(\theta) = 2/\theta^2$ for a sample of size one, and $I(\theta) = 2n/\theta^2$ for a sample of size n.

b. (i) The cdf of T is

$$P(T \leq t) = P\left(\sum \frac{Y_i}{\sum X_i} \leq t^2 \right) = P\left(\frac{2 \sum Y_i / \theta}{2 \sum X_i / \theta} \leq t^2 / \theta^2 \right) = P(F_{2n, 2n} \leq t^2 / \theta^2)$$