
Abstract:   In the first part of the talk, we focus on the gradient noise (GN) in the stochastic gradient descent (SGD) algorithm for 
training deep neural networks (DNNs). In this setting, GN is often considered to be Gaussian in the large data regime by assuming 
that the classical central limit theorem (CLT) kicks in. This assumption is often made for mathematical convenience, since it enables 
SGD to be analyzed as a stochastic differential equation (SDE) driven by a Brownian motion. We argue that the Gaussianity 
assumption might fail to hold in deep learning settings and hence render the Brownian motion-based analyses inappropriate.  We 
conduct extensive experiments on common deep learning architectures and show that in all settings, the GN is highly non-Gaussian 
and admits heavy-tails.  We further investigate the tail behavior in varying network architectures and sizes, loss functions, and 
datasets. By exploiting connections to Levy-driven differential equations and their metastability properties, our results open up a 
different perspective and shed more light on the belief that SGD prefers wide minima. In the second part of the talk, we question the 
origins of heavy tails in SGD iterations further and their link to various notions of capacity and complexity that have been proposed 
for characterizing the generalization properties of SGD in deep learning. Some of the popular notions that correlate well with the 
performance on unseen data are (i) the ‘flatness’ of the local minimum found by SGD, which is related to the eigenvalues of the 
Hessian, (ii) the ratio of the stepsize η to the batch size b, which essentially controls the magnitude of the stochastic gradient noise, 
and (iii) the ‘tail-index’, which measures the heaviness of the tails of the eigenspectra of the network weights. We argue that these 
three seemingly unrelated perspectives for generalization are deeply linked to each other. We claim that depending on the structure 
of the Hessian of the loss at the minimum, and the choices of the algorithm parameters η and b, the SGD iterates will converge to a 
heavy-tailed stationary distribution. We rigorously prove this claim in the setting of linear regression: we show that even in a simple 
quadratic optimization problem with independent and identically distributed Gaussian data, the iterates can be heavy-tailed with 
infinite variance. We further characterize the behavior of the tails with respect to algorithm parameters, the dimension, and the 
curvature. We then translate our results into insights about the behavior of SGD in deep learning. We finally support our theory with 
experiments conducted on both synthetic data and neural networks.  
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