Abstract: Approximate message passing (AMP) emerges as an effective iterative algorithm for solving high-dimensional statistical problems. However, prior AMP theory, which focused mostly on high-dimensional asymptotics, fell short of predicting the AMP dynamics when the number of iterations surpasses $o(\log n / \log \log n)$ (with n the problem dimension). To address this inadequacy, this talk introduces a non-asymptotic framework towards understanding AMP. Built upon a new decomposition of AMP updates in conjunction with well-controlled residual terms, we lay out an analysis recipe to characterize the finite-sample convergence of AMP up to $O(n / \text{polylog}(n))$ iterations. We will discuss concrete consequences of the proposed analysis recipe in the \mathbb{Z}_2 synchronization problem; more specifically, we predict the behavior of randomly initialized AMP for up to $O(n / \text{poly}(\log n))$ iterations, showing that the algorithm succeeds without the need of a careful spectral initialization and also a subsequent refinement stage (as conjectured recently by Celentano et al.)

Bio: Yuting Wei is currently an assistant professor in the Statistics and Data Science Department at the Wharton School, University of Pennsylvania. Prior to that, Yuting spent two years at Carnegie Mellon University as an assistant professor and one year at Stanford University as a Stein Fellow. She received her Ph.D. in statistics at the University of California, Berkeley. She was the recipient of the 2023 Google Research Scholar Award, 2022 NSF Career award, and the Erich L. Lehmann Citation from the Berkeley statistics department. Her research interests include high-dimensional and non-parametric statistics, statistical machine learning, and reinforcement learning.